
Delegation� E�ciently Rewriting Historyy

Cris Pedregal Martin and Krithi Ramamritham
Department of Computer Science
University of Massachusetts
Amherst� Mass� ����������
fcris�krithig�cs�umass�edu

Technical Report ��������

October 	�� �

�

Abstract

The notion of transaction delegation� as introduced in ACTA� allows a transaction
to transfer responsibility for the operations that it has performed on an object
to another transaction� Delegation can be used to broaden the visibility of the
delegatee� and to tailor the recovery properties of a transaction model� Delegation
has been shown to be useful in synthesizing Extended Transaction Models�

With an e�cient implementation of delegation it becomes practicable to realize
various Extended Transaction Models whose requirements are specied at a high
level language instead of the current expensive practice of building them from
scratch� In this paper we identify the issues in e�ciently supporting delegation
and hence extended transaction models� and illustrate our solution in ARIES�
an industrial�quality system that uses undo�redo recovery� Since delegation
is tantamount to rewriting history� a na��ve implementation entails frequent and
costly log accesses� and complicates recovery protocols� Our algorithm achieves
the e�ect of rewriting history without rewriting the history� i�e�� the log� resulting
in implementations that realize the semantics of delegation at minimal additional
overhead and incur no overhead when delegation is not used� Besides showing its
e�cient application to ARIES� we also show the correctness of the implementation
of delegation�

Our work indicates that it is feasible to build e�cient and robust� general�purpose
machinery for Extended Transaction Models� It also leads toward making recovery
a rst�class concept within Extended Transaction Models�

Keywords� Extended Transaction Models� Transaction Management� Recovery�

y Supported in part by grants from Sun Microsystems and the National Science Foundation�

Contents

� Introduction �

� Delegation� Concepts� Properties� Examples 	

	�� What� Concepts and Properties �
	���� Assumptions and Notation �
	���	 Properties �

	�	 Why� Synthesizing Extended Transaction Models � Examples � � � � � � � � � � �
	�	�� Split Transactions �
	�	�	 Nested Transactions �

	 How� Rewriting History E
ciently �

��� Operational Semantics �
��	 Implementing Delegation E�ciently �

��� Conventional Recovery� ARIES ��
��� Data Structures ��
��� Normal Processing ��
��� Recovery ��

����� Forward Pass ��
����	 Backward Pass ��

��� Implementing delegation in EOS �

� Discussion ��

��� Correctness � 	�
��	 E�ciency � 	�

� Related Work ��

 Conclusions ��

� Introduction

The transaction model adopted in traditional database systems has proven inadequate for novel

applications of growing importance� such as those that involve reactive �endless�� open�ended

�long�lived�� and collaborative �interactive� activities� Various Extended Transaction Models

�ETMs� have been proposed ����� each custom built for the application it addresses� alas� no

one extension is of universal applicability� To address this problem� we have been investigating

how to create general�purpose and robust support for the specication and implementation of

diverse Extended Transaction Models� Our strategy has been to work from rst principles�

rst identifying the basic elements that give rise to di�erent models and showing how to realize

various Extended Transaction Models using these elements� and then proposing mechanisms for

implementing these elements�

A rst step was ACTA ���� that identied� in a formal framework� the essential compo�

nents of Extended Transaction Models� In more operational terms� ASSET ��� provided a set

of new language primitives that enable the realization of various Extended Transaction Mod�

els in an object�oriented database setting� In addition to the standard primitives Initiate �to

initialize a transaction�� Begin� Abort� and Commit� ASSET provides three new primitives�

form�dependency� to establish structure�related inter�transaction dependencies� permit� to allow

for data sharing without forming inter�transaction dependencies� and delegate� which allows a

transaction to transfer responsibility for an operation to another transaction�

Traditionally� the transaction invoking an operation is also responsible for committing or

aborting that operation� Delegation separates these two concerns� so that the invoker of the

operation and the transaction that commits �or aborts� the operation may be di�erent� In

e�ect� to delegate is to rewrite history� because a delegation makes it appear as if the delegatee

transaction had been responsible for the delegated object all along� and the delegator had nothing

to do with it�

Delegation is useful in synthesizing Extended Transaction Models because it broadens the vis�

ibility of the delegatee� and because it controls the recovery properties of the transaction model�

The broadening of visibility is useful in allowing a delegator to selectively make tentative and

partial results� as well as hints such as coordination information� accessible to other transactions�

The control of the recovery makes it possible to decouple the fate of an update from that of

the transaction that made the update� for instance� a transaction may delegate some operations

that will remain uncommitted but alive after the delegator transaction aborted� Examples of

Extended Transaction Models that can be synthesized using delegate are Joint Transactions�

Nested Transactions� Split Transactions� and Open Nested Transactions ��� ����

Biliris et al� ��� gave a high�level description of how to realize the three new ASSET prim�

itives� Brie�y� permit is done by suitably adding the permittee transaction to the object�s

access descriptor� Form�dependency is done by adding edges to the dependency graph� after

checking for certain cycles� Whereas the realization of permit and form�dependency are rather

�

straight�forward� close attention must be paid to logging and recovery issues in the presence of

delegation� This is because recovery usually keeps some kind of system history �e�g�� log� and

delegation is tantamount to rewriting history �a delegated object�s operations appear to have

been done by the delegatee��

Developing a robust� e�cient� and correct implementation of delegation is the goal of this

paper�

Specically� to further the goal of providing general purpose machinery to support the spec�

ication and implementation of arbitrary Extended Transaction Models� we propose here an

e�cient implementation of delegation based on ARIES ������Also� we brie�y suggest how to

implement delegation on EOS ����� Our additions allow the �e�cient Rewriting of History�� We

hence call our implementation ARIES�RH�

By providing delegation� we add substantial semantic power to a conventional Transaction

Management System� allowing it to capture various Extended Transaction Models� We e�ciently

achieve this expressiveness by carefully �piggy�backing� the delegation�related processing onto

the routine processing� During recovery� our algorithm neither adds costly log sweeps to the

recovery algorithm� nor does it demand the actual rewriting of history� i�e�� the log�

In this paper we argue that�

� Delegation is a powerful� important primitive for realizing Extended Transaction Models�

We describe its properties and show how it can be used to manipulate visibility and

recovery properties of transactions�

� It is possible to implement delegation in an industrial�strength transaction management

system� We illustrate by extending ARIES� We thus obtain the ETM semantics with little

loss of e�ciency� and when delegation is not used no overheads are incurred� We also

demonstrate the correctness of our algorithm�

The remainder of the paper is organized as follows� In Section 	 we describe the properties

of delegation and show how it can be used to synthesize some well�known extended transaction

models� In section � we develop delegation in the context of a robust� industrial�grade transaction

management system� First we explain delegation�s semantics in terms of rewriting history� We

then discuss the needed data structures and describe how we modify both the normal processing

and the recovery phases to support delegation� and explain how to apply our algorithm to ARIES�

We conclude the section sketching how to apply the same ideas to EOS� another transaction

management system�

In section � we discuss why our algorithm correctly implements delegation and why it does

it e�ciently� We review related work in section �� In section � we present our conclusions and

discuss future work�

	

� Delegation� Concepts� Properties� Examples

In this section we examine the properties of delegation and present its application to extended

transaction models� First we introduce some notation� then we explain delegation in terms of

visibility and recovery� and then point out some important properties� In the rest of the section

we present examples of extended transaction models and show how to synthesize them using

delegation�

��� What� Concepts and Properties

Here we describe the properties of delegation� introduce notation and state our assumptions�

����� Assumptions and Notation

� t� t�� t�� t�� ��� denote transactions� ob� a� b� ��� denote objects in the database�

� update is a generic operation on database objects� We write update�ob� and leave other details

of the update unspeci�ed� Updates are done in�place on the updated object� Note that not all
update operations con�ict with each other�

� delegate�t�� t�� update�ob�	 denotes delegation by t� to t� of update�ob��

� Invoking transaction� We call the transaction that invoked the update on the object the

invoking transaction� We write update�t� ob� when we wish to indicate that t is the invoking

transaction for that update� Updates that are never delegated
 i�e�
 whose responsible transaction

�see below	 is always their invoking transaction
 are called boring updates��

� H denotes the history of the database
 which contains events such as delegate and update
 with
a partial order indicated �� �� where � precedes ��� Operation invocations are events�

� ResponsibleTr� Let transaction t update object ob� We say that t is responsible for its updates

to ob
 when t is in charge of changes to ob� More precisely
 ResponsibleTr�update�ob�	 � t holds

from when t performs update�ob�
 or is delegated update�ob� until t either terminates or delegates

update�ob�� Notice that without delegation
 the transaction responsible for an update is always

the invoking transaction�

� Op List� The dual of ResponsibleTr is the Op List� It contains the operations a transaction is

responsible for� Op List�t	 � fupdate�ob� j ResponsibleTr�update�ob�	 � tg�

����� Properties

Pre� and Postconditions� When t� executes delegate�t�� t�� update�ob��� we say that t� trans�

fers its responsibility for update�ob� to transaction t�� i�e��

� pre�delegate�t�� t�� update�ob�		� �ResponsibleTr�update�ob�	 � t�	

t� must be the transaction responsible for update�ob� in order to delegate the update�
�All updates are boring in the absence of delegation�

�

� post�delegate�t�� t�� update�ob�		� �ResponsibleTr�update�ob�	 � t�	

After t� delegates update�ob� to t�
 t� becomes the responsible transaction for the update�

Operation delegate�t�� t�� update�ob�� is well formed when t� and t� are initiated and not

terminated� and t� is responsible for update�ob��

Commit�Abort of Updates� In the presence of delegation� the fate of updates to an object

is not necessarily linked to the transaction which made the updates� but instead it is linked to

the fate of the transaction to which the operation was last delegated� For instance� if t� does

update�ob�� then delegates update�ob� to t�� and t� subsequently aborts� the changes t� made to

ob via update�ob� will still survive if t� commits while it is still responsible for update�ob�� i�e��

� �Commit�t	 � H	� ��update�ob� � Op List�t	� �committ�update�ob�	 � H		 �

���update�ob� � Op List�t	� committ�update�ob�	 � H	� �Commit�t	 � H		

That transaction t commits means that all of the updates in its Op List must be committed�
Notice that these are the updates for which t is responsible�

� �Abort�t	 � H	� ��update�ob� � Op List�t	� �abortt�update�ob�	 � H		

That transaction t aborts requires that all of the updates it is responsible for �i�e�
 those in its

Op List	 will be aborted�

The events Commit�t� and Abort�t� denote the commit and abort of transaction t� and

committ�update�ob�� and abortt�update�ob�� indicate the permanence or obliteration of the changes

done by update�ob�� In the presence of delegation� the changes may have been made by either t

or other transaction�s� which eventually delegated update�ob� to t�

Concurrent Delegations� An operation can be delegated only by the transaction that is re�

sponsible for it� Since ResponsibleTr�update�ob��� is at any given time� unique� only one trans�

action can delegate an operation at any point in time� Thus� while a history may contain two or

more delegations of the same operation by di�erent transactions� the delegations for the same

operation cannot occur concurrently�

Granularity� delegating one operation vs� set of operations� In what we have discussed�

a transaction delegates a single operation with each invocation of delegate� Delegation of a

set of operations in a single invocation can be considered as the atomic invocation of multiple

delegations� one for each of the operations in the set� Delegating an object is tantamount to

delegating all the operations on that object�

In our implementation we consider the delegation of objects because in a majority of practical

situations that we have come across� delegation occurs at the granularity of objects� Also� in

the examples discussed in the next subsection� transactions delegate objects�

�

Note that it is possible for several transactions to update an object concurrently �say� when

the updates commute�� Delegation of one such operation by one of the concurrent transactions

only delegates that transaction�s operation on the object� The other transactions� operations

are not a�ected� Similarly� when a transaction delegates an object� only that transaction�s

operations on the object are delegated�

Also note that a transaction can perform operations on an object even after it has delegated

�an operation on� that object� Of course� since after delegation the system considers the dele�

gated operations to have been done by the delegatee� a transaction�s new operation may con�ict

with one of its own � one which has been delegated�

��� Why� Synthesizing Extended Transaction Models � Examples

In this section we motivate delegation through examples of its application in the synthesis of

two extended transaction models� split�join transactions and nested transactions�

Inheritance in Nested Transactions ���� is an instance of delegation� Delegation from a child

transaction tc to its parent tp occurs when tc commits� This is achieved through the delegation

of all the changes done by tc to tp when tc commits� That is� all the changes that a child

transaction is responsible for are delegated to its parent when the child commits�

A transaction can delegate at any point during its execution� not just when it aborts or

commits� For instance� in Split Transactions ����� a transaction may split into two transactions�

a splitting and a split transaction� at any point during its execution� A splitting transaction t�

may delegate to the split transaction t� some of its operations at the time of the split� Thus� a

split transaction can a�ect objects in the database by committing and aborting the delegated

operations even without invoking any operation on the objects�

In the remainder of this section we show the code for split and nested transactions� syn�

thesized using delegation and the other ASSET primitives� Other transaction models using

delegation include Reporting Transactions and Co�Transactions described in ��� ��� The former

periodically reports to other transactions by delegating its current results� In the latter� control

is passed from one transaction to the other transaction at the time of delegation�

����� Split Transactions

In the split transaction model ���� a transaction t� can split into two transactions� t� and t��

Operations invoked by t� on objects in a set ob set are delegated to t�� t� and t� can now

commit or abort independently� Conversely� two transactions� say t� and t� can join to form one

transaction t��

Consider the following code used by t� to split o� transaction t� �the code for t� is that of

function f ��

�

t� � initiate�f��

delegate�self��� t�� ob�set�� �� self returns t	

begin �t���

t� can join t� by executing�

wait �t���

delegate �t��t	�� �� t� delegates
all
 objects

����� Nested Transactions

Nested transactions are among the rst extended transaction models� they are discussed by

Moss ����� A nested transaction consists of a root �or parent� transaction and nested component

transactions� called subtransactions� The subtransactions can themselves be nested transactions�

Subtransactions execute atomically with respect to their siblings� and are failure atomic with

respect to their parent� That is� they can abort without causing the whole transaction to abort�

A subtransaction can potentially access any object that is currently accessed by one of its

ancestor transactions without creating a con�ict� Abort semantics for both root transactions

and subtransactions are similar to abort semantics in atomic transactions� Commit� however�

has di�erent semantics for the root and the subtransactions� When a subtransaction commits�

the objects modied by it are made accessible to its parent transaction� The e�ects on objects

are only made permanent on the commit of the topmost root transaction�

We illustrate how nested transactions are translated into the ASSET primitives with a simple
two�level example of trip arrangements�

tid t�

t � trans �

trans � airline�res��� �

trans � hotel�res��� � �

If the airline reservation fails� then the trip is canceled� If the hotel reservation fails� the trip

is canceled too� and the e�ects of the airline reservation should not be made permanent� The

nested transaction above is translated into�

tid t�

t � initiate�trip�

begin�t��

commit�t��

where the function trip is

void trip��

�

tid t	�

t	 � initiate�airline�res��

�

permit �self���t	��

begin�t	��

if �wait�t	��

abort�self����

delegate�t	�self����

commit�t	��

tid t��

t� � initiate�hotel�res��

begin�t���

if �wait�t���

abort�self����

delegate�t��self����

commit�t���

�

We assume that t� and t� will each abort if they are unsuccessful� If they succeed� they

delegate their updates to t� Otherwise any updates made so far are discarded� Note that after

it has delegated all its changes� the fate of a reservation transaction does not matter�

� How� Rewriting History E�ciently

In this section we discuss how to e�ciently implement delegation and present our algorithm RH

�rewrite history�� as follows� In ��� we introduce the operational semantics of delegation in the

context of a generic Database System �DBS�� In ��	 we examine alternative solutions and give

an overview of our algorithm�

In ��� we set the stage with an overview of ARIES� whose undo�redo protocol requires

two passes� one forward and one backward� over the log�

The following subsections explain the algorithm ARIES�RH in detail� we present the data

structures involved in ���� then we describe in ��� what ARIES�RH does during normal process�

ing� In ��� we discuss how ARIES�RH�s recovery realizes delegation e�ciently using the same

passes over the log as ARIES�

We end the section in ��� with an overview of how to apply RH to a di�erent recovery

protocol� no�undo�redo as exemplied by EOS�

��� Operational Semantics

In a DBS the log is the system�s history� as it contains the records of all updates and transactional

operations� The idea of delegation is to rewrite history� selectively altering the log� Suppose that

delegate�t�� t�� ob� is the rst delegation of ob by t�� Applying this delegation can be visualized

as iterating through the log into the past� modifying the records pertaining to ob� so that each

record of an access to ob by t� will now show that the access was done by t��

�

K 	 currLSN �LSN of delegate record 	
while LOG�K� is not the initiate record for t�

if LOG�K� is an update to ob by t�
then setTransID�K
t�	 alter it to look done by t�

K 	 prevLSN�K
t�	 follow t��s BC

Figure �� Operational semantics of delegate�t�� t�� ob�

The log is a list held in stable storage� whose elements are identied by monotonically

increasing values of the Log Sequence Number �LSN�� During normal execution� the only valid

operation is appending a log record to the end of the log �with the corresponding increment of

the current Log Sequence Number�� During recovery� the log can be rolled back and replayed�

by going to the LSN of the last checkpoint and extracting� sequentially� the records from there

on�

Figure � gives the operational description of delegation in terms of the log� for a scenario

where K indicates the LSN being operated on in the current iteration� Records have a PrevLSN

eld� that contains the LSN of the previous record for the same transaction� The chain formed

by the previous LSN pointers of log records of a transaction is called Backward Chain �see �����

The delegate record is a new type that records a delegation� with pointers to the previous

records of both the delegator and delegatee �see section �����

In gure � we use the following operations on the log�

prevLSN�K
 t�	 which returns the Log Sequence Number of the previous �most recent	 log record

written by t� �i�e�
 before
 or to the left of K	�

setTransID�K
t�	
 which does LOG�K��TransID	 t�
 making the record appear as if it had been

written by the transaction t��

The �elds in a log record are� LSN �log�sequence number	
 Type �update
 delegation
 commit
 etc�	

Trans�ID �the ID of the transaction that created the record	
 and Data� For delegate records there also

exist two LSN pointers to the delegator and delegatee �see ��	�

Example �� Consider the log fragment �see �gure �	�

� � � update�t�� a�� update�t�� x�� update�t�� a�� update�t�� b�� update�t�� a�� update�t�� y�

After the application of delegate�t�� t�� a	
 the log looks like�

� � � update�t�� a�� update�t�� x�� update�t�� a�� update�t�� b�� update�t�� a�� update�t�� y�

�

t2 a
update

y a
update delegate

ab
update update
t t1 t2 t1 t21t1 a x

update update

100 101 102 103 104 105

t2

106

t2t1 t2 t2 a
update

t1 t2t1 t2t2 t1 t2
a y ab

update update update delegate
a x

update update

100 101 102 103 104 105 106

time

after rewriting

before rewriting

Figure 	� Delegation Log Example

��� Implementing Delegation E�ciently

The idea of rewriting history by modifying the log is simple� but its implementation is not� The

na��ve implementation of the algorithm in gure � would be to apply each delegation to the log

as it is issued� That is� every time a delegation is issued� the system traverses the log backwards

modifying the records pertaining to the object being delegated� This �eager� approach carries

high performance costs� and is also hard to prove correct� The performance penalty is due to the

random nature of the accesses �as opposed to the usual append�only to logs�� and the fact that a

single delegation will generate many accesses� in principle sweeping the whole log ����� Ensuring

recovery correctness is hard because we manipulate the log outside the usual append�only mode�

complicating the model with extra data�� whose integrity in the face of crashes is not guaranteed

by the standard recovery algorithm and must be ensured ad�hoc�

A better approach may be to use a �lazy� algorithm that defers the alteration of the log to

recovery� This is based on the observation that during normal processing it is not necessary to

have the delegations applied to the log� The algorithm can keep track of the e�ect of delegations

in volatile data structures� and log the delegations to have the necessary information after

a crash� It modies the log � rewrites history � during recovery� which manipulates the log

anyway� based on the information on the log about updates and delegations� For example�

in undo�redo �see section ����� the algorithm uses the logged information on updates and

delegations to reconstruct the information about delegations during the analysis�redo �forward�

pass� Then in the undo �backward� pass� it modies the log as suggested in section ��� and

gure �� moving records from the delegator�s backward chain to the delegatee�s� and rewriting

the record to make it appear as if created by the delegatee�

Although this is workable� it still su�ers from drawbacks� Because it modies the log in

other than append mode� issues of correctness in the face of failure and performance must be

addressed� It is possible to solve the correctness problem by ensuring that each BC switch

�Extra data� information accessed by transactions that is not part of the database schema� for example� the

log� the system clock� wait�for graph� Gehani et al� ���� discuss the issues of correctness with extra data�

Analysis

Redo All

Undo Losers

PASSES

Checkpoint Failure

LOG

Failure

Figure �� ARIES passes over the log

is done atomically�� The performance� however� is inherently hostage to the way the log is

accessed� Recall that in general the log does not t into volatile storage� The bu�ering can

result in thrashing� as the algorithm needs to jump over possibly large sections of the log to

follow backward chain pointers��

To avoid these pitfalls� we propose RH� a �lazy� algorithm for rewriting history that does

not modify the log� We give a brief overview here� As pointed out before� delegation can be

supported easily during normal processing� During normal processing� we use a volatile table

to keep track of which objects are updated by which transactions� When a delegation happens�

we change the corresponding object binding� and log delegations to be able to reproduce the

change after the crash� During recovery� on encountering delegations during the log sweeps� we

reconstruct the bindings between operations on objects and transactions� but do not actually

rewrite the log records� We �rewrite the history� of the system not by modifying the log� but by

interpreting the log during recovery according to the delegations� That is� we obtain the desired

semantics � rewrite of the history according to the delegations � without having to actually

rewrite the log�

��� Conventional Recovery� ARIES

Before going into the details of the algorithm to implement delegation� we present the conven�

tional version of ARIES� to establish context and terminology�

ARIES uses an undo�redo protocol� which means that after a crash� some updates will be

undone and some redone� according to whether the responsible transaction is a winner or loser�

ARIES scans the log in one or two forward passes� analysis and redo� and then a backward pass�

undo� See gure ��

The Analysis pass starts at the last checkpoint� updates the information on active transac�

tions and dirty pages up to the end of the log� and also determines the �loser� transactions� to

be rolled back in the undo pass� The Redo pass repeats history� writing to the database those

updates that had been posted to the log but not applied before the crash� This re�establishes

the state of the database at failure time� including uncommitted updates� Because some ARIES

�It is easier to tolerate unusual log manipulations during recovery than during normal processing�
�The problems of this approach are discussed in detail in ��	��

��

t2 t2 a
update

y a
update delegate

ab
update update
t t1 t2 t1 t21

 BC(t1)

BC(t2)

time

t1 a x
update update

100 101 102 103 104 105 106

Figure �� Backward Chains in the log

variants merge the analysis and redo passes in a single forward pass� ARIES�RH relies on a

single forward pass to add delegation�

The Undo pass rolls back all the updates by loser transactions in reverse chronological order

starting with the last record of the log�

To facilitate its undo�redo recovery� ARIES keeps� for each transaction� a Backward Chain

�BC� linking the transaction�s records in the log� That is� all the log records pertaining to one

transaction form a linked list� beginning with the most recent one� which is accessible through

the Tr List� By following the BC� ARIES�s recovery avoids repeating undos� as it can insert

compensation log records �CLRs� to indicate how to undo an action or whether to skip an

already undone action�

In terms of Backward Chains� applying delegate�t�� t�� ob� is tantamount to removing the

subchain of records of operations on ob from BC�t��� merging it with BC�t���

In the remainder of this section we explain ARIES�RH� our extension to ARIES for dele�

gation� in detail� We present the data structures� and we indicate how the normal processing

keeps the tables up to date� We then examine recovery processing� rst the forward �analysis

 redo� pass and then the backward �undo� pass� Finally� we examine how to apply RH to a

di�erent recovery protocol� no�undo�redo as exemplied by EOS�

��� Data Structures

For each transaction� we must know which operations on which objects it is responsible for� i�e��

its Op List� To that end� we augment Transaction List and each transaction�s Object List found

in conventional DBSs� We also add a delegate type log record�

Tr List� We use the standard Transaction List Tr List �	� �	� ��� that contains� for each

Trans�ID� the LSN for the most recent record written on behalf of that transaction� and� during

recovery� whether a transaction is a winner or a loser �see ����� Notice that for each transaction

t� Tr List�t� contains the head of the backward chain BC�t�� Figure � shows the backward

chains in the delegation example of section ����

��

1 (, 102, 106)

a

1 Ob_List (t)

object

b

Scopes

t2(, 101, 101)

t

t

2

Scopes

(, 105, 105)

t2 , 102, 102)(

t1(, 100, 104)

2Ob_List (t)

a

x

y

object

Figure �� Object Lists after applying delegation of Example �

Ob List� Conventionally� associated with each transaction t there is a set Ob List�t��� In gure

�� Ob List�t�� contains the objects t� is currently accessing� In terms of Op List �see 	������

Ob List�t� ! fob j �update�t�� ob� � Op List�t�g� that is� the objects for which there is an update

that t is responsible for� Note that the update may have been originally done by t� and the

responsibility transferred via delegation�

Because transactions are responsible for specic updates� and not a whole object� a certain

object may appear in more than one Ob List �but the associated updates will be di�erent�� For

example� this can occur in the case of non�con�icting updates� e�g�� increments of a counter� We

identify the updates that a transaction is responsible for by introducing the notion of scope�

�The scope supports the notion of Op List��

Example �� Consider a transaction t that updates ob
 then delegates ob� to t�
 then again
updates ob and �nally delegates it to t��

� � � update�t� ob�� delegate�t� t�� ob	� update�t� ob�� delegate�t� t�� ob	� abort�t�	� commit�t�	 � � �

Regardless of t�s fate
 if t� commits and t� aborts
 the �rst update �delegated to t�	 must

persist
 whereas the second �to t�	 must be undone�

For each object ob in Ob List�t�� there is a set of scopes� stored in the eld Scopes� covering

the updates to that object that t� is currently responsible for� A scope is of the form �t�� l�� l��

�see gure ��� t� is the transaction that actually did the operations �the invoking transaction��

The other two are LSN values� l� is the rst� and l� the last LSN in the range of log records

that comprise the scope� See gure �� This indicates that t� is responsible for all updates to ob

�by t�� between the two LSNs��

Delegate Log Records� We also introduce a new log record type� delegate� Its type�specic

�In some implementations Ob List may have pointers to locks on the objects�
�Remember that delegate
t� t�� ob� really delegates the updates to ob that t is responsible for�
�This allows us to compute ResponsibleT r
and Op List� without having to store�update it with each update�

�	

�eld name function

LSN position within the LOG
tor transaction id of delegator

torBC delegators backward chain
tee transaction id of delegatee

teeBC delegatees backward chain

Figure �� Fields of the delegate log record

elds record the two transactions and object involved in the delegation �see ����� The elds are

shown in gure �� The other record types are not modied� and are as discussed in ����

��	 Normal Processing

Our algorithm augments the normal processing of ARIES� we focus on the changes entailed by

delegation� We describe ARIES�RH in terms of how di�erent events are processed� The current

value of the log sequence number is CurrLSN�

� begin�t	

�� initialize� Add t to Tr List� create Ob List�t	�

� update�t� ob�

�� adjust scopes� If this is the �rst update t does on ob since t started or last delegated ob
we must open a new scope� Otherwise
 there is an active scope of t on ob that we must
extend�

if ob �� Ob List�t	 then Ob List�t		 Ob List�t	
 fobg �

if �t� � 		 �� Ob List�t	�ob�

then Ob List�t	�ob��Scopes	 �t
 CurrLSN
CurrLSN	 �create new scope�

else Ob List�t	�ob��Scopes	 �

CurrLSN	 �extend existing scope�

� delegate�t�� t�� ob	

�� well�formed� Verify that ob � Ob List�t�	
 which tests
 for this case
 the precondition

in ������ pre�delegate�t�� t�� update�ob�		� �ResponsibleTr�update�ob�	 � t�	�

�� prepare log record�s��

Record delegator
 delegatee�
Rec�tor 	 t�� Rec�tee	 t��

Link this log record into t��s and t��s backward chains�

Rec�torBC 	 BC�t�	�PrevLSN � Rec�teeBC 	 BC�t�	�PrevLSN �

� transfer responsibility� Move operations on ob from Op List�t�	 to Op List�t�	�

Add ob to delegatee�s Ob List and record that ob was delegated by t��
	We use � in a �eld to denote we do not change it or are not interested in its content�

��

Ob List�t�		 Ob List�t�	
 fobg � Ob List�t�	�ob��deleg	 t��

Pass delegator�s Scopes for ob to the delegatee and remove ob from the delegator�s Ob List�

Ob List�t�	�ob��Scopes	 Ob List�t�	�ob��Scopes
 Ob List�t�	�ob��Scopes �

Ob List�t�		 Ob List�t�	� fobg�

Remark� We use a union because t� may already be responsible for some operations on ob before

receiving the delegation� Therefore� the Scopes �eld may actually contain several scopes� contiguous

ranges of LSNs on the log� each tagged with the transaction that initially was responsible for that

scope� which is the invoking transaction for those updates�
Notice that the scopes may overlap on

the log segment they cover but cannot share the same invoking transaction��

�� write delegation log record�s��

Write log record and mark it as the current head of the backward chains of delegator and
delegatee�

LOG�CurrLSN� 	 Rec � BC�t�		 CurrLSN � BC�t�		 CurrLSN�

� commit�t	

�� commit operations� Write to the log the operations for which t is responsible�

�� write commit record� Write a commit record to the log after the operations�

� flush log� Write to stable storage all records in the log
 from the previous �ush up to
the commit record inclusive�

� abort�t	

�� abort operations� Undo the updates for which t is responsible� Recall that any object

that had been delegated by the aborting transaction will no longer be in the transactions Ob List�

unless it updated it after the delegation�

Obtain minLSN �min fbegin jOb List�t	�ob��Scopes� � � begin� 	g on objects inOb List�t	�

For each object in Ob List�t	
 undo all updates contained in its Scopes
 writing to the log

the compensation log records
 going backwards in the log until minLSN is reached�

�� write abort record� Write log abort record to the log�

� flush log� Flush log up to abort record�

The other transactional events are processed as usual ��	� ����

��
 Recovery

After a crash� the transaction system must do some recovery processing to return to a consistent

state� This entails restoring the state from a checkpoint �retrieved from stable storage�� and

using the log �also from stable storage� to reproduce the events after the checkpoint was taken�

For simplicity of presentation� we ignore checkpoints from now on� but it is easy to see how data

structures can be rebuilt using checkpoints instead of going back to the beginning�

��

Crash is the event that represents a failure� RecoveryComplete is the event that appears in

the history to indicate that the recovery is complete�

Winners is the set of transactions that had committed before the crash� The recovery

algorithm ensures that their updates will be reinstalled� Losers is all the other transactions

that were active but had not committed� or had aborted� before the crash� Their updates must

be undone�

In the rest of this section� we present the forward pass of ARIES�RH� we establish the state

after that pass and� we describe the backward pass�

	��� Forward Pass

ARIES starts with a forward pass that nds out which transactions were active� and which

committed before the crash �analysis�� Committed transactions are Winners� active but un�

committed� or aborted transactions are Losers� ARIES also uses the forward pass to redo logged

updates� At the end of this pass the Object Lists are up to date� including the s of the updates�

Before the rst pass of recovery starts� Winners ! Losers ! �� For brevity we omit some

details already explained for the normal processing� We describe the treatment of the log records

matter relevant to delegation in ARIES� Other records are processed as usual�

� begin�t	

�� initialize� Add t to Tr List� create Ob List�t	�

�� loser by default� Consider t a loser by default�

Losers 	 Losers
 ftg�

� update�t� ob�

�� adjust scopes� This is done just as update ��	 in normal processing�

�� redo� Redo update�t� ob��

� delegate�t�� t�� ob	

�� transfer responsibility� This is done just as delegate �	 in normal processing�

� commit�t	 t committed and thus is a winner�
�� commit� Declare t committed� Notice that ts updates were redone during this forward pass�

�� winner� Declare t as a winner�

Winners 	 Winners
 ftg� Losers 	 Losers �ftg�

After the Forward Pass we have updated the following�

� Ob Lists are restored to their state before the crash
 for all transactions�

� Winners has all the transactions whose updates must survive �i�e�
 which had committed before

the crash	� Losers has those whose updates must be obliterated�

��

� LsrObs includes all objects in the Ob Lists of loser transactions� We compute it after the forward

pass ends
 as LsrObs �
�

t�Losers

Ob List�t	�

	��� Backward Pass

ARIES undoes exactly all the updates invoked by the loser transactions� It follows the back�

ward chains �of records for each transaction� for each of the loser transactions� undoing all their

updates� ARIES continually takes the maximum Log Sequence Number �LSN� for an outstand�

ing undo� ensuring monotonically decreasing �by LSN� accesses to the log� with the attendant

e�ciencies�

This approach is not possible in the presence of delegation� What we need to achieve is the

undo not of all the updates invoked by a loser transaction� but instead of all the updates that

were ultimately delegated to a loser transaction� Thus� the analogy to ARIES would be to have

backward chains linking those updates� but constructing and maintaining them is complicated

and expensive� One could scan all log records backwards� identifying the loser updates �to be

undone�� which are the updates whose responsible transaction is a loser� This is undesirable as

it entails unnecessarily inspecting many winner updates�

Fortunately� the necessary information to undo loser updates e�ciently is in the object lists

of the loser transactions� the update scopes used for delegation� In the rest of the section we

discuss how undo and delegation are integrated in the backward pass of ARIES�RH� The only

records that require special processing are update and delegation� all others are processed as in

ARIES�

Notice that by undoing the loser updates instead of the updates invoked by loser transactions�

we are in fact applying the delegations� as we undo according to the fate of the nal delegatee

of each update�	 As in ARIES� for each undone update we write a Compensation Log Record

�CLR�� to avoid undoing an update repeatedly should crashes occur during recovery�

Recall that scopes keep track of updates whose fate is the same �i�e�� that were delegated

together�� It is enough to inspect records within the loser scopes to nd all loser updates� To

do this e�ciently� we introduce the notion of cluster of scopes� Scopes may overlap� a cluster of

scopes is a maximal set of overlapping scopes� �We only care about �loser� clusters of scopes�

so we omit �loser� from now on�� Within each cluster we must examine every log record�

but between clusters we examine none� For instance� in gure � there are three clusters� the

middle one contains four overlapping loser scopes� �In gure � loser scopes are depicted in dark

shades�� The last cluster has already been processed� and we are processing the middle cluster

�K indicates the current log record�� The current cluster begins at begCluster� the rst �i�e�� to

be processed last� cluster in the log begins at begLsrScopes�

In ARIES� all loser updates are those invoked by loser transactions� so ARIES�RH reduces to ARIES when

there is no delegation�

��

begLsrScopes

no loser scopes

loser scopes
backward sweep

begCluster
K

current cluster already done

Figure �� Loser scope clusters in a the log

We can now outline the algorithm for the backward pass of ARIES�RH �see also gure ���

The idea is to examine each loser cluster� skipping all other records� Within a cluster we

examine all records� undoing loser updates� We also adjust the current cluster by adding or

deleting scopes� closing the cluster when we reach its rst record� at begCluster� The algorithm

ends when we reach the beginning of the rst cluster� at begLsrScopes�

We begin by computing the set LsrScopes� which contains all the scopes for which loser

transactions are responsible� We compute begLsrScopes which marks the beginning of the

leftmost �oldest� loser scope in the log� We start sweeping the log backwards �i�e�� right�to�left

in the gure �� at the end of the rightmost loser scope� and end at begLsrScopes �see while

loop���� This sweep consists of two steps� we identify a cluster and undo all the loser updates

in its component scopes ���� and we move to the next cluster once the current one is exhausted

����

We process a cluster ��� in four steps� First� we check whether the current record is the

right end of a scope� in which case we add the scope to the current cluster ����� Then we check

if the record is a loser update� and if so we undo it ��	�� Specically� a record is a loser update

if it is within the ends of a loser scope whose invoking transaction is the same as the update�s

invoking transaction� Then we check if a scope ended in the record just processed� in which case

we remove it from the current cluster� because the scope has already been treated ����� Finally

we move K �left� to the next record �����

Since when we add a scope to the current cluster Cluster ���� we remove it from LsrScopes�

��� nds the next cluster by looking at the remaining scopes in LsrScopes and nding the

rightmost end�

The repeat loop ends because we decrement K by at least one on each iteration� and although

����s limit begCluster may decrease� it may never go below begLsrScopes �because begLsrScopes

is the minimum of scope begins�� so eventually K reaches it� The while loop ends because we

��This and the following references in parentheses are to �gure ��

��

LsrScopes � f scope j �ob��t � Losers � scope � Ob List�t��ob��Scopesg all loser scopes
if LsrScopes �! � then

begLsrScopes � min f left j � � left� � � LsrScopes g start of earliest scope
K � max f right j � � � right� � LsrScopes g end of latest scope
Cluster � � � begCluster � K

while begLsrScopes � K K sweeps log backwards to left end of earliest loser scope

��� repeat identify and process cluster of overlapping slopes

add to Cluster the loser scope that ends in K
��� if � � � left� K� � LsrScopes then

Cluster � Cluster � f� � left� K�g put in Cluster
LsrScopes � LsrScopes � f� � left� K�g and remove from LsrScopes
begCluster � min �left� begCluster� updating where cluster starts

undo if it is loser update
�	� if LOG�K� ! update�t� ob� and � �t� � � � Cluster then

undo�update�t� ob��
CLR�PrevLSN � LOG�K��PrevLSN and other undo information � � �

discard scope that begins at new record LOG�K�
��� if � � � left� � � Cluster and K ! left then already processed�

Cluster � Cluster � f� � left� �g so discard

processed record LOG�K�� next �left� � � �
��� K � K ��

�end �� until K � begCluster �nished this cluster �sweep backwards�

�nd next cluster of scopes
��� K � max f right j � � � right� � LsrScopesg

RecoveryComplete

Figure �� Backward pass of ARIES�RH

��

decrement K by at least one each time ��� �and more when we skip between clusters �����

Notice that we visit each log record at most once and in a monotonically decreasing way

�K gets decremented by at least one in each iteration of the while loop�� This is important as

the log will be brought in from memory� and mimics ARIES�s strategy of continually taking the

largest LSN of the updates to be undone�

The set of scopes LsrScopes is constructed once and depleted in the reverse order of scopes�

so an e�cient data structure is a priority queue �on a heap� sorted by right end of scopes� with

the largest value rst� The set of scopes Cluster is searched by invoking transaction� gains scopes

to the left and loses scopes to the right� A binary tree keyed on transaction ids is a reasonable

implementation�

��� Implementing delegation in EOS

Rewriting History can be applied to other recovery algorithms� for instance� EOS ���� which uses

a no�undo�redo protocol� Next� we give an overview of EOS and then discuss brie�y how to

apply RH to implement delegation�

To avoid having to undo changes in the database� EOS avoids applying those changes until

the transaction that made them is ready to commit� This is achieved by keeping a global log� in

which only transaction commits are recorded� and per�transaction private logs� If a transaction

commits� its private log is �ushed to stable storage� if it aborts� the private log is discarded� The

recovery of EOS is simpler than that of ARIES� because no undo is necessary� only committed

changes are logged� so they are reapplied during a single forward sweep of the global log �that

in turn brings in the private logs of committed transactions��

We can support delegation within EOS by applying an algorithm very similar to ARIES�RH

for the normal processing and the forward pass of the recovery� The di�erences are due to

the private logs kept by EOS� �Rewriting History� must now be implemented across di�erent

private logs� When two transactions do concurrent �but non�con�icting� updates on an object�

and one delegates its operations to the other� the net e�ect should be as if the delegatee had

executed all the operations in the original order� In EOS the transactions keep separate logs� so

reconstructing that order is not straightforward� This situation does not arise when we restrict

the operations to reads and writes� because in this case� all updates are translated to write

operations and so even compatible update operations execute in isolation� In the read�write

case� then� it is enough for the delegator to supply the delegatee with an image of the current

state of the object at the time of the delegation� This image is stored as part of the delegate

record�

Supporting delegation in EOS entails logging the delegation both at the delegator and the

delegatee� The delegator �lters out updates it has delegated when it comes time to commit� to

avoid committing updates it no longer is responsible for� If it aborts� its private log is discarded�

�

but the delegated updates are preserved in the log of the delegatee� When the delegatee commits�

it has the updates it has received through delegation preserved in the delegatee record� so it

does not need to rely on the delegator �which may not be around any more�� If the delegatee

aborts� the updates it received in delegation will not be applied �delegatee�s log is discarded�

delegator�s is either discarded or ltered��

Recovery is simple� because we only need to redo the winner updates� Loser transactions

have their private logs discarded� and winner transactions have their private logs redone� This

takes care of the undelegated updates� For delegated updates� rst we see that they get redone

if they were winner updates �i�e�� their Responsible Transaction at crash time was a winner�

that is� had committed�� Regardless of the fate of the invoking transaction �and any intervening

delegating transactions� the winner update was delegated to the winner transaction last� Thus

when redoing the winner transaction�s log� we restore the state of the object from the delegation

record in the winner�s private log� Notice that there is no possibility for this ever being undone

because no updates are ever undone�

If an update was in a loser transaction� it will not be redone because the loser transaction�s

private log is discarded� It also does not get redone by other transactions for the following

reason� If the invoking transaction is a winner� it must have delegated the update �for it to be a

loser now�� When a transaction delegates an update it lters it out when saving its private log�

so that update will not be there when the private log is redone� This applies to any transaction

that was at some point responsible for the update and delegated it� Thus the loser updates do

not get redone�

� Discussion

In this section we discuss two issues with regard to the implementation of the recovery algorithm�

First we analyze aspects of the algorithm presented in section � to show that it implements

delegation correctly� In the second part� we examine the implementation and argue that it is

e�cient�

��� Correctness

To ensure correctness in a recovery protocol� we must guarantee that� after recovery� all op�

erations by loser transactions have been rolled back completely �their e�ects obliterated� and

all by winner transactions have been committed �their e�ects guaranteed to be permanent��

Conventional ARIES complies with this by using the undo�redo protocol �EOS does no�

undo�redo�� We show in this section that ARIES�RH� that is� ARIES with our modications

complies with this requirement when it is rephrased to include delegation� That is� operations

delegated to loser transactions will be aborted� and operations delegated to winner transactions

	�

will be committed� Naturally� boring operations �i�e�� never delegated�� are treated as in the

conventional case� because in the absence of delegation ARIES�RH reduces to ARIES�

After the event Crash� we initiate recovery� which ends with the event RecoveryComplete�

Between Crash and RecoveryComplete all events are generated by the recovery system� For

simplicity� we ignore checkpoints and assume that the system restarts from the beginning�

A brief recapitulation of the algorithm is in order� The forward pass reads but does not write

anything to the log� It redoes the updates present in the log� and constructs the setsWinners of

transactions whose updates will survive after the recovery� It also records the Losers� i�e�� active

transactions that did not commit before the crash� ARIES�RH also computes LsrObs after the

forward pass� The backward pass reads the log� interpreting it according to the delegations� and

undoes updates on loser objects�

In the remainder of this section� we characterize loser and winner transactions and their

associated updates� we explain the idea of delegation chain� and formalize the correctness prop�

erties� Then we show the correctness of the algorithm� to wit� that all loser updates get undone

and all winner updates get redone�

Winners� Losers� LsrObs�

� t � Winners�� �Commit�t	� Crash	

t is a winner if it committed before the crash�

� t � Losers�� �Begin�t	� Crash � �Commit�t	 � H	

t is a loser if it was active but did not commit before the crash�

Losers� an active transaction is by default a loser� If there is a commit record before the crash

its transaction is moved to Winners� Note that these sets are disjoint
 and that Losers includes
transactions that had aborted before the crash�

� LsrObs �
�

t�Losers

Ob List�t	 i�e�
 ob � LsrObs� �t � Losers � ob � Ob List�t	

LsrObs is the set of all objects for which there is a loser transaction that is responsible for an
update to that object� This means that a loser object has at least one update that will be undone�

Delegation Chain�

We assert that if tn is responsible for an update� either tn invoked the update itself �n ! ��

or tn received it from t� through a sequence of delegations� Formally�

update�t�� ob� � Op List�tn	 �� ���n � �	� t�� t�� � ���� tn��� tn such that

that is
 if tn is responsible for the update
 then there is a sequence of transactions
 starting with t�

the invoking transaction
 and ending with the responsible transaction tn
 such that

�update�t�� ob�� delegate�t�� t�� ob	� ���� delegate�tn��� tn� ob	� �

� �y such that delegate�tn��� tn� ob	� delegate�tn� ty� ob	� Crash� �

� �i �� � i � n	� �tx such that delegate�ti��� ti� ob	� delegate�ti� tx� ob	� delegate�ti� ti��� ob	�

	�

t� delegated the update to t�
 and so on
 until �nally tn received it in the last delegation� and for each

ti
 ti�� is the �rst transaction to which ti delegates ob
 i�e�
 there is no other intervening delegate �to

say
 transaction tx	 of that update�

We prove that if tn is responsible for an update� there is a sequence of delegations that links

the original update log record to tn by induction on n� The base case� for n ! �� is immediate

from the algorithm that applies delegation during normal processing and the forward pass of

recovery��� Specically� when a transaction invokes an update� it creates or enlarges its current

scope to include it �see delegate in ����� Each time a delegation is invoked� the scope of the

delegated object� which includes the delegator�s updates� is passed to the delegatee �see delegate

in ����� The scope denes uniquely the updates being delegated �see Ob List in ��� and the

remark in �����

For the inductive case� note that a delegated scope is never modied by the delegatee� For a

given object� a delegatee either keeps the scope�s� it received in the delegation� or it augments

them with its own scope for its updates on the object� Thus in a delegate�tk� tk
�� ob�� the scopes

that tk
� keeps for the object ob are Ob List�tk��ob��Scopes � the scope tk
� has on ob� Thus

an update contained in tk�s scope for ob will be in tk
��s�

Correctness Properties

Here we state the properties of undo and redo that describe correct recovery�

undo ��t � Losers �update�t�� ob� � Op List�t		�Undo�update�t�� ob�	� RecoveryComplete	

All updates ultimately delegated to a loser transaction are undone before the recovery ends�

redo ��t � Winners� �update�t�� ob� � Op List�t		�Redo�update�t�� ob�	� RecoveryComplete	

All updates ultimately delegated to a winner transaction are redone before the recovery is �nished�

In other words� updates whose responsible transaction did not commit before the crash are

undone �obliterated�� and updates whose responsible transaction committed before the crash

are redone �made permanent�� In the following paragraphs we discuss how the implementation

satises the requirements�

Correctness of ARIES�RH

For the correctness of the normal processing� notice that the scope information on theOb List

associated with each transaction is su�cient to decide whether to commit or abort a specic

update in the absence of crashes� Then notice that the updates covered by scopes in the Ob List

of a loser transaction are aborted� and those in the Ob List of a winner are committed� This is

easy to see by inspection of the algorithm� specically� the update� commit� and abort cases in

����

For the recovery� we rst show that undo holds� that is� that all loser updates are undone�

An update is a loser if ResponsibleTr�update�t�� ob�� ! t and t � Losers� �We already know

��For n � �� reduces to no delegation and holds trivially� it is the boring update case�

		

that there must be a delegation chain from t� to t�� This means that there is a scope �t�� l� r� �

Ob List�t��ob��Scopes� and a log sequence number q� l � q � r such that LOG�q� ! update�t�� ob��

by the denitions of scope� loser update� and responsible transaction� Then by the construction

of LsrScopes in the algorithm �gure ��� �t�� l� r� � LsrScopes� Let us show that the record for

the update will be eventually checked and undone� Initially �t�� l� r� � LsrObs� l � initial value

of K� and begLsrScopes � r� by construction� Because K starts at the maximum value and

goes down by one� or jumps to the next right end of a scope� it will eventually reach r and put

�t�� l� r� in Cluster� When K reaches q� it is within the scope and the update is undone�

We prove the redo property by contradiction� Recall that all updates are redone in the

forward pass� We show that no winner update gets undone� We proceed by contradiction� we

suppose that a winner update is erroneously undone in the backward pass� If the update was

undone� it means that it appeared in some loser scope �see gure ��� But� because the delegation

chain applies here too �it does not depend on the fate of the nal transaction�� this means that

there is a chain of delegations that starts with the invoking transaction of the update and ends

with a loser transaction� But that means that the responsible transaction of the update was a

loser� contradicting that it was a winner update� Q�E�D�

��� E�ciency

We claim that ARIES�RH is e�cient in the following senses�

� No delegation� no overhead� In the absence of delegation ARIES�RH reduces to the original

algorithm
 so no penalty is incurred due to the extra functionality when it is not used�

� Normal processing� low overhead� Posting one delegation during normal processing has the
cost of adding a log entry and updating the object bindings� The cost of delegations is linear in
the number of operations delegated� For instance
 the updating of Object Lists for a delegation
is linear in the length of the Ob Lists�

� Recovery� low overhead� The costs of the recovery passes are similar to those of conventional

ARIES� ARIES�RH does not add any extra passes� For all operations
 supporting delegation

only entails costs at most linear in the number of delegated operations �see previous item	� Also

recovery costs are dominated by disk log accesses
 which ARIES�RH does as e�ciently as ARIES�

For instance
 on the backward pass
 log records are visited at most once and in strict decreasing
order
 as in ARIES
 allowing for the usual optimizations�

The rst two points follow from the fact that ARIES�RH only adds some elds to data

structures that are already updated by the conventional algorithm� When there is no delegation�

these elds are just left undened� Delegating adds the constant time of logging the delegation

operation and updating the Ob Lists of the delegator and delegatee transactions by moving

as many scopes as objects are delegated �hence the linearity�� This entails lookup�updates

to the transactions� Ob List� which resides in main memory and can be organized for e�cient

lookup�update� At transaction termination the Ob List can be simply discarded�

	�

As for recovery� ARIES�RH�s forward pass incurs the same overhead as ARIES does to

reconstruct transactional data structures and redo updates� Again� the only additional infor�

mation that is collected is piggy�backed in those data structures� No special sweep of the log

is required� ARIES�RH obtains its information during the same accesses as the conventional

algorithm� Specically� the forward pass of recovery is only di�erent from that of ARIES in its

processing of update �there is an extra check for ob � Ob List�t�� and delegate �same check and

the move from one Ob List to the other�� Thus� ARIES�RH adds neither extra log sweeps� nor

costs proportional to the length of the log� as it uses the same sweeps of the log as ARIES to

reconstruct the delegation information�

We expect the Ob List to be much smaller than the log being analyzed� and to wholly reside

in main memory� Thus the cost of accessing Ob List is small compared to bringing the log from

stable storage� the dominant cost during recovery�

The backward pass of recovery reads the log in much the same way as ARIES� by continually

taking the maximum Log Sequence Number that must be undone �in ARIES� or the scope

clusters within which updates must be undone �in ARIES�RH�� In ARIES�RH we examine

log records in clusters formed by loser scopes� but� as in ARIES� we do it in a monotonically

decreasing way� To compare with ARIES� we need only examine the costs for processing update

records �the rest are just as in ARIES�� For each update� we do a lookup in Cluster for a check

of delegation scope �to decide whether to undo it�� and possibly write a Compensation Log

Record� Otherwise� we just add or remove scopes from the Cluster and the LsrScopes sets�

In summary� the ARIES�RH algorithm adds only minimal overhead to support delegation�

� Related Work

We have beneted from insights gained in an e�ort with goals closer to ours� the work at

GTE Labs on Transaction Specication and Management Environment �TSME� �
��� The ar�

chitecture of TSME consists of a Transaction Specication Facility that understands TSME�s

transaction specication language� and drives the Transaction Management Mechanism which

congures the run�time system to support a specic Extended Transaction Model� The Transac�

tion Management Mechanism is programmable� but uses templates to describe existing extended

transaction models� and also to drive the incorporation of only the components necessary for

a given Extended Transaction Model� It is a toolkit approach� in which certain expressions in

the specication language are mapped to certain congurations of pre�built components� so it

approaches the problem at a coarser grain� This may allow for initial gains in performance� but

we believe that the use of language primitives is a richer and more �exible approach�

The recent work of Barga and Pu ���� also inspired in part by ACTA� explores another

modular approach� based on the ideas of metaobject protocols ����� and incorporates some

elements of the TSME approach and some of our language�based approach�

	�

Also related is the work on the ConTract model �	��� In ConTract� a set of steps dene

individual transactions� a script is provided to control the execution of these transactions� But

ConTract scripts introduce their own control �ow syntax� while ASSET introduces a small set

of transaction management primitives that can be embedded in a host language�

Other related work also includes Structured Transaction Denition Language ���� a persistent

programming language geared to portability and the integration of legacy applications� Its em�

phasis� however� is in Application Programming Interfaces conforming to existing conventional

transactional technology�

Finally� the idea of rewriting history is a natural extension of the repeating history paradigm

of ARIES ���� and is a generalization of ARIES�NT ��
�� an extension to ARIES for nested

transactions �����

	 Conclusions

Recent work has produced many Extended Transaction Models �ETMs�� but each has its own

tailor�made implementation� With delegation �and the other two ASSET primitives� permit and

form�dependency ���� we believe we can o�er the �exibility to synthesize a wide range of ETMs

at a performance comparable to that of tailor�made implementations� Delegation� by allowing

changes in the visibility and recovery properties of transactions� is a very useful primitive for

synthesizing Extended Transaction Models� Our work builds on the formal foundation provided

by ACTA ��� �� ��� and the primitives introduced in ASSET ����

The main contribution of this paper is the concept of rewriting history �RH�� designed to

achieve the semantics of delegation in an e�cient and robust manner� We believe that this work

forms a crucial step towards the �exible synthesis of ETMs�

� By casting delegation in terms of rewriting history� we were able to express the issues of

delegation in terms amenable to the specication of a recovery algorithm�

� We showed how to achieve RH in the context of a practical system �ARIES�� and sketched

how to apply it to another �EOS�� suggesting the practical implementability of delegation�

As indicated in section �� the cost of delegation in ARIES�RH is very low� and its support

incurs no cost at all when delegation is not being used�

� We have also demonstrated the correctness of our implementation� showing that it satises

the desired transaction properties in the presence of delegation�

We are currently implementing RH within EOS� We will continue investigating the broader

issues of providing robust� e�cient� and �exible transaction processing� In particular� we are

interested in making recovery a rst�class concept within transaction management and in pro�

	�

viding a variety of recovery primitives to a transaction programmer so that di�erent recovery

requirements and recovery semantics can be achieved �exibly�

Acknowledgments� We thank Lory Molesky� Jagan Peri� and Jayavel Shanmugasundaram

for valuable discussions� We also thank Mohan Kamath and Amer Diwan� whose comments

helped make this paper more readable�

References

��� Roger S� Barga and Calton Pu� A Practical and Modular Implementation of Extended Transaction

Models� In Proceedings of the ��st International Conference on Very Large Data Bases
 September
�����

��� Philip A� Bernstein
 Vassos Hadzilacos
 and Nathan Goodman� Concurrency Control and Recovery

in Database Systems� Addison Wesley
 Reading
 Mass� �����

�� Philip A� Bernstein
 Per O� Gyllstrom
 and TomWimberg� STDL � A Portable Language for Trans�

action Processing� In Proceedings of the ��th International Conference on Very Large Databases

pages �������
 Dublin
 ����

��� A� Biliris
 E� Panagos� EOS User�s Guide� AT�T Bell Labs Report
 May ����

��� A� Biliris
 S� Dar
 N� Gehani
 H� V� Jagadish
 K� Ramamritham� ASSET� A System for Sup�

porting Extended Transactions� In Proceedings of the ACM SIGMOD International Conference on
Management of Data
 Minneapolis
 Minn�
 June �����

��� P� K� Chrysantis and Krithi Ramamritham� Synthesis of Extended Transaction Models using

ACTA� ACM Trans� on Database Systems
 September �����

��� P� K� Chrysanthis� ACTA	 A Framework for Modeling and Reasoning about Extended Transac

tions� Computer Science TR ������ PhD thesis
 Department of Computer and Information Science

University of Massachusetts
 Amherst
 Mass�
 September �����

��� P� K� Chrysantis
 and Krithi Ramamritham� Delegation in ACTA as a Means to Control Sharing

in Extended Transactions� IEEE Data Engineering
 ����	� �����
 June ����

��� D� Georgakopoulos
 M� Hornick
 P� Krychniak
 and F� Manola� Speci�cation and Management

of Extended Transactions in a Programmable Transaction Environment� In Proceedings of ��th
International Conference on Data Engineering
 Houston
 Tex�
 February �����

���� A� K� Elmagarmid
 editor
 Database Transaction Models for Advanced Applications� Morgan

Kaufman
 �����

���� Narain Gehani
 Krithi Ramamritham
 Oded Shmueli� Accessing Extra Database Information�

Concurrency Control and Correctness� Computer Science TR �����
 University of Massachusetts

Amherst
 ����

	�

���� Jim Gray and Andreas Reuter� Transaction Processing� Concepts and Techniques� Morgan

Kaufman
 San Jos�e
 Calif� ����

��� Gregor Kiczales
 Jim des Rivi�eres
 Daniel G� Bobrow� The Art of the Metaobject Protocol� MIT

Press
 Cambridge
 Mass�
 �����

���� C� Mohan
 D� Haderle
 B� Lindsay
 H� Pirahesh
 P� Schwartz� ARIES� A Transaction Recovery

Method Supporting Fine�Granularity Locking and Partial Rollbacks Using Write�Ahead Logging�

In ACM TODS
 ����	�������
 �����

���� J� Eliot B� Moss� Nested Transactions� An approach to reliable distributed computing� PhD thesis

Massachusetts Institute of Technology
 Cambridge
 Mass�
 April �����

���� C� Pu
 G� Kaiser
 G�
 and N� Hutchinson� Split�Transactions for Open�Ended Activities� In

Proceedings of the ��th International Conference on Very Large Data Bases
 pages ����
 Los
Angeles
 CA
 Sept� �����

���� Cris Pedregal Martin and Krithi Ramamritham� ARIES�RH� Robust Support for Delegation by

Rewriting History� TR ����� Computer Science Dept�
 University of Massachusetts
 Amherst
 June
�����

���� Cris Pedregal Martin and Krithi Ramamritham� Delegation� E�ciently Rewriting History� TR

����� Computer Science Dept�
 University of Massachusetts
 Amherst
 October �����

���� Rothermel
 K�
 and C� Mohan� ARIES�NT� A Recovery Method Based onWrite�Ahead Logging for

Nested Transactions� In Proceedings of the �th International Conference on Very Large Databases

pages ����
 Amsterdam
 �����

���� H� W�achter and A� Reuter� The ConTract Model� In �����

���� Gerhard Weikum
 Christof Hasse
 Peter Broessler
 Peter Muth� Multi�Level Recovery� In ACM

International Symposium on Principles of Database Systems
 pages ������
 Nashville
 �����

	�

