
1

Dissemination of Dynamic Data
Pavan Deolasee Amol Katkar Ankur Panchbudhe

Krithi Ramamritham Prashant Shenoy

Department of Computer Science and Engineering. Department of Computer Science
Indian Institute of Technology Bombay University of Massachusetts

Mumbai, India 400076 Amherst, MA 01003
{pavan,amolk,ankurp,krithi}@cse.iitb.ernet.in {krithi,shenoy}@cs.umass.edu

Abstract—An important issue in the dissemination of time-
varying web data such as sports scores and stock prices is the
maintenance oftemporal coherency. In the case of servers ad-
hering to the HTTP protocol, clients need to frequentlypull
the data based on the dynamics of the data and a user’s co-
herency requirements. In contrast, servers that possesspush
capability maintain state information pertaining to clients
and push only those changes that are of interest to a user.
These two canonical techniques have complementary prop-
erties with respect to the level of temporal coherency main-
tained, communication overheads, state space overheads, and
loss of coherency due to (server) failures. In this demonstra-
tion, we show how to combine push- and pull-based tech-
niques to achieve the best features of both approaches. Our
combined technique tailors the dissemination of data from
servers to clients based on (i) the capabilities and load at
servers and proxies, and (ii) clients’ coherency requirements.
By using our continual querysystem, we will show how diverse
requirements of temporal coherency, resiliency and scalabil-
ity can be met using our techniques.

I. I NTRODUCTION

Recent studies have shown that an increasing fraction
of the data on the world wide web is time-varying (i.e.,
changes frequently). Examples of such data include sports
information, news, and financial information such as stock
prices. An important issue in the dissemination of this data
is the maintainence of temporal coherency. Web proxy
caches that are deployed to improve user response times
must track such dynamically changing data so as to pro-
vide users with temporally coherent information. The co-
herency requirements on a data item depends on the nature
of the item and user tolerances. To illustrate, a user may be
willing to receive sports and news information that may be
out-of-sync by a few minutes with respect to the server, but
may desire stronger coherency requirements on data items
such as stock prices. A proxy can exploit user-specified co-
herency requirements by fetching and disseminating only
those changes that are of interest and ignoring intermediate
changes. For instance, a user who is interested in changes
of more than a dollar for a particular stock price need not be
notified of smaller intermediate changes. We demonstrate a
proxy based application tailored specifically for delivering

dynamic data.

II. M AJOR APPROACHES FOR RETRIEVING DYNAMIC

DATA

Consider a proxy that caches several time-varying data
items. To maintain coherency of the cached data, each
cached item must be periodically refreshed with the copy
at the server. We assume that a user specifies a temporal
coherency requirementtcr for each cached item of inter-
est. The value oftcr denotes the maximum permissible
deviation of the cached value from the value at the server
and thus constitutes the user-specified tolerance. As shown
in Figure 1, letS(t), C(t) andU(t) denote the value of
the data item at the server, cache and the user, respectively.
Then, to maintain temporal coherency (tc) we should have

|U(t)− S(t)| ≤ c.

Push or Pull
Push User

S(t)
Server Proxy

P(t) U(t)

Fig. 1. The Problem of Temporal Coherency

A. The Pull Approach

To achieve temporal coherency (tc) using a pull-based
approach, a proxy can compute aTime To Refresh (TTR)
attribute with each cached data item. TheTTR denotes
the next time at which the proxy should poll the server
so as to refresh the data item if it has changed in the in-
terim. A proxy can compute theTTRvalues based on the
rate of change of the data and the user’s coherency require-
ments. Rapidly changing data items and/or stringent co-
herency requirements result in a smaller TTR, whereas in-
frequent changes or less stringent coherency requirement
require less frequent polls to the server, and hence, a larger
TTR. Observe that a proxy need not pull every single change
to the data item, only those changes that are of interest to
the user need to be pulled from the server (and the TTR is
computed accordingly).

2

TABLE I
BEHAVIORAL CHARACTERISTICS OFDATA DISSEMINATION ALGORITHMS

Algorithm Resiliency Temporal Coherency Overheads (Scalability)
(fidelity) Communication Computation State Space

Push Low High Low High High
Pull High Low (for smalltcrs) High Low Low

High (for largetcrs)

Clearly, the success of the pull-based technique hinges
on the accurate estimation of the TTR value. A discussion
on suitable techniques for determining TTR appears in [5].
We used the adaptive TTR approach mentioned therein.

B. The Push Approach

In a push-based approach, the proxy registers with a
server, identifying the data of interest and the associated
tcr, i.e., the valuec. Whenever the value of the data
changes, the server uses thetcr value c to determine if
the new value should be pushed to the proxy; only those
changes that are of interest to the user (based on thetcr)
are actually pushed. Formally, ifDk was the last value that
was pushed to the proxy, then the current valueDl is pushed
if and only if |Dl−Dk| ≥ c, 0 ≤ k ≤ l. To achieve this ob-
jective, the server needs to maintain state information con-
sisting of a list of proxies interested in each data item, the
tcr of each proxy and the last update sent to each proxy.

The characteristics of the approaches are summarized in
table I

III. C OMBINATIONS OF PUSH AND PULL

It is clear from table I that both the approaches men-
tioned have complementary properties in terms of fidelity
achieved, scalability and resiliency. To achieve the best
characteristics of both the approaches, it is essential to com-
bine them in some way. While combinations have been
suggested in the past [1], we have developed, implemented
and evaluated these approaches. In fact, our approaches
not only achieve high scalability, they also deal with re-
siliency and fidelity improvement. We now present three
approaches to combine push and pull seamlessly so as to
get the best of both methods to obtain these properties.

A. The Push and Pull(PaP)algorithm

Suppose a client registers with a server and intimates its
coherency requirementtcr. Assume that the client pulls
data from the server using an algorithm, sayA (e.g.,Adap-
tive TTR), to decide its TTR values. After initial synchro-
nization, server also runs algorithmA. Under this scenario,
the server is aware of when the client will be pulling next.
With this, whenever server sees that the client must be noti-
fied of a new data value, the server pushes the data value to
the proxy if and only if it determines that the client will take

time to poll next. The state maintained by this algorithm is
a soft state in the sense that even if push connection is lost
or the clients’ state is lost due to server failure, the client
will continue to be served at-least as well as underA. Thus,
compared to a Push-based server, this strategy provides for
graceful degradation.

For the advantages of this technique to accrue, the server
need not run the full-fledged TTR algorithm. A good ap-
proximation to computing the client’s next TTR will suf-
fice. For example, the server can compute the difference
between the times of the last two pulls (diff) and assume
that the next pull will occur after a similardelay, attpredict.
SupposeT (i) is the time of the most recent value. The
server computestpredict, the next predicted pulling time as
follows:
• let diff = T (i)− T (i− 1)
• server predicts the next client polling time astpredict =
T (i) + diff .
If a new data value becomes available at the server be-
fore tpredict and it needs to be sent to the client to meet
the client’stcr, the server pushes the new data value to the
client.

In practice, the server should allow the client to pull data
if the changes of interest to the client occur close to the
client’s expected pulling time. So, the server waits, for a
duration ofε, a small quantity close toTTRmin, for the
client to pull. If a client does not pull when server expects it
to, the server extends the push duration by adding (diff−ε)
to tpredict. It is obvious that ifε = 0, PaP reduces to push
approach; ifε is large then the approach works similar to a
pull approach. Thus, the value ofε can be varied so that the
number of pulls and pushes is balanced properly.ε is hence
one of the factors which decides thetc properties of the PaP
algorithm as well as the number of messages sent over the
network.

B. The Push or Pull(PoP)Algorithm

While PaP is good for achieving resiliency and tempo-
ral coherency, it is poor in terms of scalability. We now
present PoP which dynamically chooses between push or
pull in order that more clients can be served. PoP is based
on the premise that at any given time a server can categorize
its clients either as push clients or pull clients and this cate-
gorization can change with system dynamics. This catego-
rization is possible since the server knows the parameters

3

like the number of connections it can handle at a time and
can determine the resources it has to devote to each mode
(Push/Pull) of data dissemination so as to satisfy its current
clients. The basic ideas behind this approach are:
• allow failures at a server to be detected early so that, if
possible, clients can switch to pulls, and thereby achieve
graceful degradation to such failures. To achieve this,
servers are designed to push data value to their push clients
when one of two conditions is met:
1. The data value at the server differs from the previously

forwarded value bytcr or more.
2. A certain period of timeTTRlimit has passed since the

last change was forwarded to the clients.
The first condition ensures that the client is never out of
sync with the values at the server by an amount exceeding
thetcr of the client. The second condition assures the client
after passage of everyTTRlimit interval that (a) the server
is still up and (b) the state of the client with the server is
not lost. This makes the approach resilient. In case of the
state of the client being lost or the connection being closed
because of network errors, the client will come to know of
the problem afterTTRlimit time interval, after which the
client can either request the server to reinstate the state or
start pulling the data itself. This ensures that in the worst
case, the time for which the client remains out of sync with
the server never exceedsTTRlimit.
• In this approach, the server can be designed to provide
push service as the default to all the clients provided it has
sufficient resources.
• When a resource constrained situation arises (upon the
registration of a new client or network bandwidth changes)
some of the push-based clients are converted to become
pull-based clients based on the criteria that we had deter-
mined earlier.
The state diagram for achieving this adaptation is shown in
Figure 2.

Registration
(with Proxy)

Push

User

Pull

(Note: Transition to Push mode

 coherence requirement low/
 volume of data served high}

 volume of data served low}

{Fidelity desired low/
 coherence requirement large/

 is possible only if the server has push capability)

Deny Request

{Server has push capability}

{Fidelity desired high/

{Server has no push capability/
 coherence requirement large/

 {Available server resources low}

 fidelity desired low}

Fig. 2. PoP: Choosing between Push and Pull

C. Combining PaP and PoP:PoPoPaP

As mentioned before,PaP achieves resiliency and tem-
poral coherency while PoP achieves scalability by classify-

ing users as per their capabilities and requirements. Now if
we replace the push component ofPoPwith PaP, then we
have achieved all the major objectives, namely resiliency,
scalability and coherency in a single algorithm. This new
algorithm isPoPoPaPi.e. Push or Pull orPaP.

IV. DeepThought:THE CONTINUAL QUERY SYSTEM

Till now we were dealing with systems tailored to spe-
cific instances of queries, such as “Tell me when IBM
stocks go up by $c”. We will now consider the system to
give the user the freedom to ask any query on the database.
Continual queries allow users to obtain new results from
database without having to issue the same query again and
again. CQs are especially useful in an environment like the
Internet, where the amount of frequently changing informa-
tion is extremely large.

A continual query (CQ) is defined as a triple(A, T,R)
(Action,Trigger, Termination), whereA is a normal query
written in some traditional query language (like SQL),T
is the trigger condition of the CQ andR is the termination
condition. A CQ is “installed” when it is first specified. The
initial execution ofA takes place on the existing data, when
a CQ is installed. The result of this query is returned to the
user as the first result of the CQ. The subsequent executions
of A depend on values ofT andR. The subsequent execu-
tion ofA takes place when the trigger conditionT becomes
true, provided that the termination conditionR is false.

A. Features of DeepThought

The DeepThought system is:
• Tailored. The system is specifically designed for dy-
namic data. All operations arememory basedand the sys-
tem tries to minimize the time taken for processing at the
proxy. Also, the delivery of data from the server to the
proxy is governed according by the query conditions. The
DeepThought query language is specifically tailored for dy-
namic data.
• Distributed . To ensure scalability and availability on the
Internet scale.
• Flexible. Since there are various algorithms for data de-
livery between the server and proxy, the system chooses
the best algorithm for a particular query/connection com-
bination. DeepThought can use any of Pull, PoP, PaP or
PoPoPaP for data retrieval.

B. Comparison with existing CQ systems

The basic idea of DeepThought is very similar to Con-
quer [4]. However, Conquer is tailored more for het-
erogenous data than for real time data. It uses disk-based
database as backend and implements the system as an ex-
tension of this database. The query language is an extension
of SQL and hence specifying queries unique to real time
data is difficult.

NiagraCQ [2] is another CQ system for the Internet. The
focus of this system is on scalability for the Internet. Simi-

4

lar queries or parts of queries are grouped logically so that
these parts need not be re-evaluated again and again. Since
most of the queries on the Internet are somewhat similar,
this process certainly proves beneficial. NiagraCQ again
uses disk-based databases. DeepThought provides scalabil-
ity by distribution of effort. However, the dynamic nature
of data makes identifying logically equivalent parts diffi-
cult. As against this, DeepThought extracts unique data
items from various queries so that there is only one thread
serving a single data item from the servers.

Also, all the existing CQ systems initiate actions when
the database is updated by external sources. DeepThought
makes an active contribution towards predicting when the
system should look for changed data values.

C. The Architecture in short

Figure 3 shows the complete structure of the DeepThought
system. The main interface of the DeepThought system to
the user side is via the CQ Server Interface (CQSI), which
may be a separate machine or a router machine. The user
initially connects with the CQSI and asks for service. If the
CQSI determines that the user can be serviced (depending
load at the proxy), then it responds with the query inter-
face, otherwise a negative acknowledgement is sent and the
user may attempt again later. The user, after receiving the
query interface, enters the query (either manually or using
some tool) and this query is sent to CQSI as a text string.
We are not including the syntax description of DTQL, the
DeepThought Query language for want of space, but it is
a language specifically tailored for dynamic data. The fol-
lowing actions are taken after this,
• When a CQ comes, the CQ Parser (CQP) breaks it up into
A, T and R,
• The CQ Installer installs the CQ
• A thread/process called CQ Thread Monitor (CQTM) is
started for the further processing of the CQ. This is prefer-
ably done on another machine in order to achieveload shar-
ing. The CQTM does the job of evaluating the action part
(A) of the CQ and coordinate the various tasks between
components.
• the CQSI returns the CQ identifier to client as well as the
chosen CQTM machine identity. The client now connects
to the chosen CQTM and downloads an applet to obtain
data from the machine.

The Source Monitor (SM) is the component which ac-
tually brings the data from the data source. There is only
one SM for each data item in the whole system. This saves
a lot of effort and bandwidth. SM uses an existing algo-
rithm module to deliver data to TH. The algorithm modules
may be for algorithms like Pull, Push, PaP, PoP [5], [3]
etc. The algorithm module is pluggable, and SM provides a
uniform interface for registry of the module, negotiation of
the parameters and data delivery. The SM chooses the best
algorithm depending on various parameters like server ca-
pabilities, volume of data through the connection, load on

the SM etc. So we can use the most suitable algorithm for
data retrieval. The SM is a separate process which may re-
side on a different machine (thus improving the bandwidth
situation).

Once the CQ has been parsed and installed, the actual ex-
ecution of the query starts. Now the trigger, T, is installed.
This is done by a separate entity called the Trigger Handler.
The process of trigger installation and further is following:
• The CQTM passes the trigger part T to TH, together with
some meta information and the list of items to be moni-
tored,
• The TH installs T and gets it ready for repetitive execu-
tion,
• For each of the data items TH tries to determine if there
is already a Source Monitor for a data item. If there is, then
it is used or a new SM is started. The SM pushes a new data
value for a data item to the TH, whenever it is available,
• When new data value arrives, the TH evaluates the trigger
T and the termination condition R, and returns the resulting
data to the CQTM which can then take action A on it,

D. Calculating Polling Frequencies

When SM uses Pull-based algorithms, TH conveys
polling intervals to the SM for each data item. This is done
by TH since the final goal of the trigger is known only to
TH through the trigger condition T. Depending on T, TH
decides polling frequencies for each of the data items in
T. Following is the process of determining polling frequen-
cies:
• For each T, the TH creates a functionF (x1, x2, . . . xn)
which is a function of all the data item values (xis) which
the TH needs to monitor in order to check if T is true.
• Let xi1 andxi2 be two consecutive values obtained from
the data source with a time duration ofδt between the two
data values. Since we have a trace of allxis during this
duration, we calculate the value of functionF at the two
instants of time, assuming change only inxi. That is, we
find

δFi = F (x11, x21 . . . xi2 . . . xn1)−F (x11, x21 . . . xi1 . . . xn1)

Like this, we find the effect of unit change in each of the
variablesxi on the function in unit time.
• We determine thepolling frequencyfor a particular data
item by having it proportional toδFi, for each of the data
itemsxi.
• Since there are multiple CQs interested in the same data
item, we use the highest polling frequency of all of them as
the frequency of polling for the particular data item.

Whenever a new data value comes, it changes the func-
tion F . But, since each of the data items are independent
of each other, they may changeF independently at differ-
ent instants. Whenever one data itemxi changesF , all xjs
(i 6= j) are notified of this change. Also, the change that
xi makes inF is not independent ofxjs. So, supposeFk
was the value ofF previously. When the new value ofxi

5

CQI

CQP

TH

CQSI

CQTM

CQTM

CQTM

TH

TH

To Client

To Source

To Source

To Source

SM

SM

SM

CQSI : CQ Server Interface
CQTM : CQ Thread Monitor
CQI : CQ Installer
CQP : CQ Parser
TH : Trigger Handler
SM : Source Monitor

CQ Server

Fig. 3. The DeepThought System design

comes, we reevaluateF with the new value ofxi and old
values ofxjs. The new value ofF becomesFk+1. But since
the polling frequencies of allxjs were decided on the basis
of the valueFk and the value has now becomeFk+1, their
polling frequencies are readjusted. As explained above, we
set the polling frequency of a data item according to the
change it makes inF in unit time i.e.δFi .

V. DEMONSTRATION

The major contributions of our research work are:
• Three new algorithmsPaP, PoP and their combination
PoPoPaP for disseminating dynamic data on the Inter-
net. They achieve resiliency, scalability and temporal co-
herency.
• A totally new continual query system catering specifi-
cally to dynamic data

We will be demonstrating the working of the entire sys-
tem in specific reference to the stock market scenario.
• The users will be able to enter queries such as:

show v1=(100*MSFT+200*INTL+300*IBM)
for stocks when change(v1) > 500$
till v1 > 20000$;

on remote servers. The specific instance mentioned above
is a portfolio query.
• Get stock related Web data.
• Choose between Pull, PaP, PoP and PoPoPaP and deter-
mine the efficacy of our approaches.

VI. CONCLUSION

The pull and push approaches are used to retrieve data
from the Web. Due to the specific nature of the data that
we are dealing with, none of these approaches can in itself
retrieve data on the web scale. While pull suffers from lack
of fidelity, push suffers from lack of resiliency and scalabil-
ity. This demonstration demonstrates the efficacy of various

combinations of pull and the push approach. Most notably,
we show how fidelity, resiliency and scalability of the sys-
tem improves by using PaP and PoP. This science of combi-
nation of push and pull can be put to innovative use in con-
tinual queries made on dynamic data. Our continual query
system is probably the first one to deal specifically with dy-
namic data. We have a continual query system which is
• Uses only main memory databases so that delays asso-
ciated with disk based databases which become significant
when dealing with real time data can be eliminated.
• Has a query language specifically tailored to deal with
dynamic data.
• First system to do computation dissemination
• Uses a novel method for retrieving data from the web.
• Is fully distributed.

We will be demonstrating the CQ system and using it as
a showcase, demonstrate the efficacy of our algorithms.

REFERENCES

[1] S. Acharya, M. J. Franklin and S. B. Zdonik, Balancing Push
and Pull for Data Broadcast,Proceedings of the ACM SIGMOD
Conference, May 1997.

[2] J. Chen, D. Dewitt, F. Tian and Y. Wang, NiagraCQ: A Scalable
Continuous Query System for Internet Databases.Proceedings of
the 2000 ACM SIGMOD International Conference on Manage-
ment of Data, May 16-18, 2000, Dallas, Texas, USA.

[3] P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham and
P. Shenoy, Dissemination of Dynamic Data on the Internet.Inter-
national Workshop on Databases in Networked Information Sys-
tems, University of Aizu, JAPAN December 4-6, 2000.

[4] L. Liu, C. Pu and W. Tang, Continual Queries for Internet Scale
Event-Driven Information Delivery,IEEE Trans. on Knowledge
and Data Engg., July/August 1999.

[5] R. Srinivasan, C. Liang and K. Ramamritham, Maintaining Tem-
poral Coherency of Virtual Data Warehouses,The 19th IEEE
Real-Time Systems Symposium (RTSS98), Madrid, Spain, Decem-
ber 2-4, 1998.

