
Guaranteeing Recoverability in Electronic Commerce

Cris Pedregal-Martin Krithi Ramamritham

Computer Science Department, University of Massachusetts
Amherst, Mass. 01003 USA

E-mail: cris@cs.umass.edu

Abstract

Electronic commerce systems (retail, auction, etc.) are
good examples of data-based systems that operate under
correctness and resilience requirements of a transactional
nature but go beyond conventional databases, as they are
formed by the aggregation of heterogeneous, autonomous
components. In this paper we introduce a framework to
specify, analyze, and reason about the behavior of such sys-
tems, focusing on how they are designed to make consistent
progress in spite of failures. The contributions of this pa-
per are: (a) the introduction of the Guarantee abstraction
to deal with transactional applications; (b) a framework
based on guarantees and protocols to specify the behaviors
of systems and their components and reason about the prop-
erties of systems and their components; and (c) application
of the framework to a common e-commerce scenario. The
framework allows the hierarchical composition of transac-
tional systems and their properties, as well as the proofs of
these properties: we specify a system’s behavior at its most
abstract level, and proceed to decompose the specification
mirroring the structure of the system’s components, consid-
ering the role of guarantee-preserving component systems
and recovery in each case. In particular, we show how the
lower-level properties are supported by the component sys-
tems, which we also characterize within the same frame-
work.

1. Introduction

Many data-based systems go beyond conventional
databases, as they are formed by the aggregation of hetero-
geneous, autonomous components, but operate under cor-
rectness and resilience requirements of a transactional na-
ture. In this paper we introduce a framework to specify
and reason about the requirements (and how to satisfy them)
for such systems to make consistent progress towards their
goals in spite of failures. Ensuring progress in spite of fail-
ures is the task of recovery, broadly understood to mean the
infrastructure that deals with the consequences of failures

in a manner that enables the progress of the system. In or-
der to achieve this end-to-end property even in the face of
failures, each of the components must observe certain be-
haviors which we describe in terms of protocols, and keep
certain promises, which we describe in terms of guarantees.
The abstractions of guarantees and protocols are stated in
terms of predicates on events and on the state of the system
as produced by a particular history of these events.

Contributions of the Paper. The primary contributions
of this paper are: (a) the introduction of the Guarantee ab-
straction to deal with transactional applications; (b) the de-
velopment of a framework based on guarantees and proto-
cols to specify the behaviors of systems and their compo-
nents and reason about the properties of systems and their
components; and (c) application of the framework to a com-
monly occurring e-commerce scenario. An interesting as-
pect of the framework is that it allows the hierarchical com-
position of transactional systems and their properties, as
well as the proofs of these properties.

A Specific E-Commerce Scenario. Our scenario con-
sists of all the parties in an e-commerce retail (business)
transaction, e.g., a customer, a merchant, supplier, and a
bank. We describe the system, at the highest level, in terms
of how the behaviors and relationships between these com-
ponents contribute to the progress of an e-commerce (busi-
ness) transaction. Specifically, the property, or goal, of the
e-commerce system is that (the right) goods be exchanged
for (the correct amount of) money [9]. In e-commerce, as
in most real systems, this end-to-end property must hold in
spite of failures; in other words, once the merchant confirms
and order to a client, the goal of completing the exchange
of goods for money must be attained eventually.

Throughout the paper, we consider the specific scenario
(illustrated in Figures 1 and 2) of an online Merchant sell-
ing to a Customer who pays with a credit card1 issued by a
Bank, which functions as a trusted third party for the trans-
fer of money between the Merchant and the Customer. A
Supplier provides the goods to the Customer as instructed

1We chose this well-known scenario for pedagogical reasons – to cap-
ture enough real world details without overwhelming the reader.

Cris Pedregal Martin
To appear in Proc. 3rd Int'l Workshop on Adv. Issues of E-Commerce and Web-Based Info. Sys. (WECWIS 2001), San Jose, Calif., 21-22 June 2001

Table 1. Example Guarantees.
Example enable action disable action trigger action discharge action

E-Commerce
Merchant obtains au-
thid from Bank

Merchant cancels au-
thid with Bank

Merchant tells Bank to
pay based on prior au-
thorization

Bank pays
Merchant

(Bank’s) Database
System

transaction T’s
update � to �� put in
persistent store

Abortion of T Commitment of T
�� reflects T’s
update �

DB’s Recovery
System

redo log record for up-
date � to �� put in per-
sistent store

Abortion of T
redo update � on ��
(during recovery)

update� redone on ob-
ject ��

by the Merchant. (M stands for the Merchant, C for the
Customer, B for the Bank, and S for the Supplier.) 2

Each party to the e-commerce system is in turn a sys-
tem of its own, typically dependent on existing compo-
nents. For example, the Merchant is dependent on business
rules that involve managing inventory, billing, and commu-
nicating through interactions with the Customer, a Supplier,
and Bank. To complete its part of the business transaction
in spite of failures, the Merchant relies (a) on the guaran-
tees provided by the Bank, the Supplier, and the Customer,
(b) on following certain protocols in its interactions with
these entities, and (c) on the recovery properties of its own
database system. Figure 1 reflects the actions taken by the
parties involved, under the assumption that all requests are
granted and the sale succeeds. The scenario is explained in
detail in Sections 2 and 3.

Guarantees allow Compositional Treatment of Re-
coverability Properties. We provide a specification frame-
work which exposes only the abstract properties of the un-
derlying components that play a role in supporting the cur-
rent level’s functional and recovery-related goals. For ex-
ample, a Merchant should not confirm an order unless it is
sure that it will be able to complete it (i.e., arrange success-
ful shipping and charging) in spite of failures. Specifically,
to process an order, the Merchant needs to secure a pay-
ment promise from the Bank. This is satisfied by obtaining
a credit card charge authorization, in effect a guarantee that
the Merchant will be paid later by presenting the authoriza-
tion to the Bank. When the Merchant externalizes the order
confirmation, it is making a promise to the Customer that
the goods will be shipped, which relies on the guarantee
from the Bank that it will make payments that correspond
to prior authorizations and on the guarantee from the Sup-
plier that the goods have been reserved from the stock. The
Bank, in turn may rely on (i) the Bank’s contract with the
Customer, and (ii) the recoverability of the Bank’s inter-
nal database. The above example is characterized by the
precedence constraints governing the actions (the interac-

2For simplicity, we assume that a single Bank takes care of the Cus-
tomer and the Merchant’s payment details; in the real world, there would
be at least two banks involved, with mutual guarantees for the transfer of
charges and payments.

tions with its components) of the Merchant and the follow-
ing guarantees: the Merchant’s order confirmation is a guar-
antee to the Customer that the order will be shipped and
requires (a) a guarantee from the Supplier that the ordered
goods will be shipped, (b) a guarantee from the Bank that
(the corresponding) authorized charge will be honored, and
(c) a guarantee from the Customer that it will recognize (to
the Bank) the charges arising from this sale. Notice that this
does not specify how each component supports its guaran-
tee, but does impose the requirement that it support it (for
instance, the Bank cannot forget about authorizations given
and the corresponding escrows on accounts). This example
illustrates that our ideas are suitable for rich hierarchical
treatment of the kind of systems we are interested in.

Within a component, a database transaction system of-
fers the recovery support for its guarantees, relying in turn,
on the guarantee of persistence its own database recovery
system supports. For example, by updating its authoriza-
tions and accounts data structures within a transaction, the
Bank obtains atomicity and durability which enable it to im-
plement guarantees, both external and internal. That an au-
thorized charge will be paid is an external guarantee offered
to the Merchant and supports directly the end-to-end prop-
erty of exchange of money for goods. The guarantee that
the Bank will be able to bill the Customer for the charge
is internal and necessary for the Bank’s own recovery from
failures. Each level has protocols that guide its interactions
with the components it uses, which together with the guar-
antees at that level allow the system to achieve its goals.

Thus, by exposing how guarantees depend on each other
via abstract requirements, we formalize expectations that
are enforced within each component, as these systems are
typically aggregations of autonomous components. For ex-
ample, in asserting that it will have the goods shipped, the
Merchant relies on the Supplier’s guarantee of reserving the
necessary stock, without the ability to see, much less im-
pose, how the Supplier implements the promise.

Reasoning about End-to-End Properties of Systems.
So far, we examined the framework with respect to its abil-
ity to specify the protocols and guarantees involved at each
level of the system. Our framework is also designed to sup-
port reasoning about the system, for example, (a) to show

Table 2. Basic Notation.
Notation Name Description
� (System) history partial order (p.o.) on events
event event/action operation op; also �� Æ� � � � in formulas
� e.g., �� Æ happens-before denotes order: � happens before Æ in history �
����������� ��������� action invocation subsystem� invokes ������ w/parameters ������� on�

message sending � sends� message ������ w/parameters �������

that a guarantee expected at one level can indeed be deliv-
ered by the component that gives the guarantee, (b) to prove
correctness properties such as those involving the correct
exchange of goods for money, and (c) to understand the
consequences of a change in the system, and thus ensure
that the desired goal is still achieved. Regarding the lat-
ter, consider again the case of the charge authorization the
Merchant secures from the Bank in order to commit an or-
der, and suppose that the Merchant passes on the credit card
details to the Bank, which returns an authorization for that
charge. An advantage of this method is that the Merchant
can discard the credit card data immediately and reduce its
security requirements. In a subsequent redesign, the Bank
may want to change its agreement with the Merchant to al-
low the Merchant to “self-authorize” some charges off-line,
i.e., without contacting the Bank. This self-authorization
may apply to charges under a certain threshold, or for pe-
riods in which the Bank is unavailable. Given our specifi-
cation of Bank’s guarantee, it is straightforward to identify
the component that needs to accommodate the new func-
tionality, and how, in order to ensure the correct exchange
of goods for money.

In summary, the specification and reasoning capabili-
ties of our framework apply to systems which operate in
a loosely defined transactional nature, i.e., that:

� manage valuable transactional data, representing
money, goods, or other resources,

� require robust behavior in the face of failures, i.e., re-
quire support for recovery,

� but, unlike conventional DB transaction management
systems, these systems are generally formed by a dis-
tributed aggregation of heterogenous and autonomous
components, which only guarantee certain results
given certain protocols but do not allow access to their
internals.

Overall, the challenge here is that the system needs
transactional support as a whole yet it is composed of au-
tonomous components.

Outline for the paper. The rest of this paper is orga-
nized as follows. We begin in Section 2 by introducing the
building blocks of our formalism: actions, guarantees and
protocols, and discussing the kind of properties we charac-
terize. We show the application of our framework by study-

ing an electronic commerce example in detail, in Section
3. We then apply our ideas to the analysis of one of the
e-commerce components, the bank, in Section 4, and we
show how one external guarantee offered by the bank is sup-
ported by its internal properties. Finally, we present related
work in Section 5 and offer some conclusions in Section
6. Throughout the paper we introduce notation as and when
we need it and provide the details in tables off the main text;
we do likewise with details of the system.

2. Building Blocks: Guarantees and Protocols

In this section we introduce the building blocks of our
framework, namely the notions of actions or events, guar-
antees, and protocols and give motivating examples. We
regard a system as consisting of interrelated subsystems,
whose activities and interactions take place in the form of
actions. Constraints on how those actions may happen in
the history of the system are expressed by protocols, and
recovery and persistence properties are captured by guar-
antees.

2.1. Actions and Events

In the context of the system’s history, the occurrence of
events corresponds to actions and so we use the terms in-
terchangeably (see Table 2). An action may be the sending
of a message between components, or the execution of an
operation or step within a component. Actions are defined
to be atomic.
Notation: We denote an action with a tuple containing
the initials of the subsystem which invokes the action (the
sender), the subsystem on which the action is invoked (the
receiver), and a description of the action with parameters as
appropriate. For example ����� ���� ��� ������ � ������ is
the action in which Merchant asks the Bank for a charge au-
thorization for amount � on the account of customer ������
(see Table 3 for further details3). Actions may have param-
eters which we omit when possible to reduce clutter.

2.2. Guarantees

In its simplest form, a guarantee involves two subsys-
tems (components): the requestor requests a guarantee

3We assume that message transmission always succeeds, i.e., the un-
derlying infrastructure reliably delivers all messages.

from the guarantor and in response the guarantor en-
ables the guarantee. Later, the requestor invokes an
action that triggers the guarantee.4 The guarantor must
(eventually) perform the invoked triggering action and
discharge action,5 which delivers its promise. More
precisely, associated with a guarantee G is a 4-tuple:
�	��
�	 �������� ���
�	 �������� �����	� �������� �������	 ��������

With each of the above actions is associated a predicate
which becomes true iff the corresponding action takes
place. Thus, for a guarantee G, 	
��	�� is true only after
the action ���	
� ������ occurs. When ����	
� ������
occurs, predicate �����	�� becomes true. Similarly, for
the other two predicates. For simplicity, we have two
independent predicates, 	
��	� and �����	� ; as we shall
see, an enabled guarantee can be discharged, only if it
has not been subsequently disabled. The semantics of
guarantees, with actions as events in the system’s history, is
defined by the following three statements.
(I) �	
��	�� � ��� �����	�� �

� ������	�	�� � ���������	�� �
The statement means that, once the ���	
� ����� ac-
tion takes place, (unless ����	
� ����� happens) if the
������� ����� is invoked, eventually the ��������� �����

will occur, i.e., the guarantee will be discharged. Each ac-
tion may in turn have preconditions.

We want the actions in the guarantee to capture the in-
tended sequence, so we add the following protocols to the
definition of a well-formed guarantee:
(II) ��������� ����� � � �

����	
� ������ ������� ������ ��������� ������
This says that if a guarantee has been discharged, it must
have been enabled first, and then triggered, before the dis-
charge happened.
(III) ����	
� ����� � � �
����	
� ������ ����	
� ����� � ��������� ����� �� ��
This says that if a guarantee has been disabled, it had to be
first enabled, and it cannot have been discharged.
Notation. We name guarantees with a letter G followed by
either the initials of the requestor and the guarantor, for ex-
ample GBM, or a brief name related to their use, for example
GXauth (see tables 4 and 6).

We illustrate guarantees with the following (simplified)
examples (see Table 1). Detailed treatment of guarantees
outlined in 1 and 2 below appears in subsequent sections.

1. Once an e-commerce merchant obtains an authoriza-
tion code authid for a specific amount from the bank
(that issues the customer’s credit card), the merchant
has the guarantee that if the Merchant later requests

4The enable and trigger actions are typically messages exchanged be-
tween the requestor and the guarantor.

5The discharge action is typically an actual change in the state of the
world effected by the guarantor.

payment of the charge associated with authid, the Bank
will pay the charged amount.

Note that the Merchant need just present the autho-
rization code authid to the bank to trigger the guar-
antee. Thus the onus of retaining information about
the authorized charge so that it can later deliver on the
guaranteed payment lies with the bank. For this, the
Bank relies on the guarantee (discussed next) given by
its database that operations performed by committed
transactions (in this case, the transaction invoked by
the Bank to record the details of the authorized charge)
will persist.

2. Once a database system records in its persistent store
(the details of) a specific operation � performed by a
transaction T on an object ��, it is guaranteed that,
once T commits, the operation �’s effects will be re-
flected in ��.

Note that the enabling action transaction T’s update
� to �� is put in persistent store can be considered to
have been completed if either (a) the state of �� in per-
sistent store reflects the update � or (b) the details of
the update � are stored in persistent store, say as a log
record. To support this guarantee, the database system
in turn relies on the recovery system’s guarantee (dis-
cussed next).

3. Once a recovery subsystem writes the redo log record
for an operation to persistent store, we have the guaran-
tee that, if called upon, the recovery subsystem has the
necessary information to perform the operation again.

This guarantee example can be used to illustrate that
a guarantee may never have to be discharged. For ex-
ample, if the object reflecting the operation’s effects
becomes persistent (e.g., if the object is “stolen” from
the buffer) before the need to redo arises, say, due to a
crash, the trigger action may not occur. (For instance,
ARIES [6] optimizes its redo phase by redoing an op-
eration according to a given redo log record only if the
page does not already reflect the operation.)

The three examples given above reflect several aspects
of guarantees:

� An enabled guarantee need be discharged only if the
triggering action is invoked. This has ramifications for
the requestor of the guarantee. For example, the Mer-
chant must persistently store the authorization code
given by the Bank so that later, if necessary, it can in-
voke the triggering action, providing the authorization
code.

� An enabled guarantee must be discharged once the
triggering action is invoked. This has ramifications for

Merchant Customer Bank Supplier

 M asks B
auth for $pM,B, auth tim

e

M,S, shiptoC
M tells S
 to ship
 x to C

 C orders
 x @ $p

C,M, order

B,M,authOK
B will pay
 $p to M
if charged

M requests x
 @ price $pM,S, allot

M,S, allotOK S allots x
to M for C

M,C,orderOK M sells x
 @ $p to C

M,B, pay M charges
 $p to B

S,M, pay S bills M
 $p for x

B,C, pay B bills C $p

at this point, the order transaction is committed

 enable guarantee

 trigger guarantee

request guarantee

LEGEND

Figure 1. An Electronic Commerce Scenario: Component Subsystems and Actions.

the guarantor. For example, the Bank who gave the
authorization must persistently store the authorization
details so that later, once invoked, the triggered action
can be done (and subsequently the guarantee can be
discharged, i.e., the charge paid).

� A guarantee may be disabled before being triggered,
which means the guarantor is released from the obli-
gation to discharge the guarantee. For example, the
Merchant might abort its sale to the Customer after ob-
taining the authorization (e.g., if it is unable to secure
stock to fill the order), in which case it may explicitly
disable it, thus releasing the Bank of the obligation.
(This in turn enables the Bank to release the amount
escrowed from the Customer’s credit line.)

� Guarantees at a certain level can be used, for exam-
ple, to reason about the functioning of that level of
a system without worrying about how the guarantee
is achieved by the guarantor. We will be using this
feature to reason about the e-commerce system purely
based on the guarantees provided by its components C,
M, B, S, without resorting to the details of the innards
of these component systems.

� Guarantees provided by a certain component typically
will be based on the guarantees provided by the sub-
systems of that component. For instance, a Bank’s
guarantee to the Merchant is based on the guarantees

Merchant Customer Bank Supplier

(S, C, shipment: x)

(M, S, payment: p)

(B, M, payment: x)

(C, B, payment: p)

Figure 2. Discharge of Guarantees achieves
Goods-Money Atomicity in E-Commerce.

of the Bank’s database which in turn are based on the
guarantees provided by the recovery subsystem of the
database.

2.3. Protocols

The purpose of a protocol is to dictate correct behavior,
by placing conditions on the occurrence of certain events
(that is, conditions for the presence of some event in the sys-
tem’s history) or on the precedence relationships between
events, which represent actions. For example, ���� �
������ (read: ���� precedes ������ in the system’s history)
specifies that a (for example) supplier must ship the goods

Table 3. Electronic Commerce Actions.
Precondition Action Postcondition Comments

TRUE ��������	� ��� �� �	���
� �����
��� C places order with M
�����
��� � �����
 ������� � M confirms order to C
�����
��� ��������	��� ��� ����
�
� �����
��� (this is the commit point)
�����
��� ��������� ��� �	���
 � ��
�
� �����
��� M awaits B’s authorization
�����
��� � �����
������� � B guarantees future payment and

� � �������	���
� ����������� ���
�
 ��	���
� �������	���
�� � � B escrows amount auth
TRUE ���������� ��� ����
�
� �����
��� M requests stock

�����
 ��� � �����
������� � S guarantees future shipment
� in stock ������������ ���
�
 � ��	� � reserved from stock S reserves� from stock

�����
 ��� �
��������
 ��� �

��������	���� � � ����� ������ ��� ��
�
� ������ ����	�� ��� M tells S to ship goods
�����
��� �
��������
��� � M presents charge to B

��������	���� � � �������� ����	���
� ������ ����	�� ���
�����
��� �
��������
��� � B bills C for

��������� � � �������� �����
�
� ����������	�� ��� the charge it received from M
�����
 ��� �
��������
 ��� � S bills M for

����� ������� � � �������� �����
�
� ����������	�� ��� the shipment M ordered

before charging for them. Another classic example of a pro-
tocol is the Write-Ahead Logging (WAL) protocol that man-
dates that an update to the database must be preceded by the
logging of this update.

Notation: We name protocols with an initial P and a sub-
script. We specify them via the relation� on events in the
system’s history.

Clearly, protocols are neither novel nor hard to follow,
hence they do not deserve elaborate explanations. We
would like to point out however, the forced progress as-
sumption made about protocols: Suppose � happens be-
fore � �� � � �, where � and � are steps in an activity.
According to the forced progress assumption, once step �

executes, � will be forced to eventually execute provided
the data needed for � to execute are (eventually) available.
The forced progress assumption underlies progress of nor-
mal as well as recovery processing in most systems. For
example, in workflow systems, it is the job of a workflow
engine to ensure the progress of steps by scheduling a step
once its predecessor is complete.

By stating a forced-progress protocol, we are indicating
that the component’s underlying engine will ensure that the
next step will eventually happen, without indicating how.
With that protocol specification we can prove properties
about the component. In turn, using the protocol specifi-
cation as a requirement, we can separately show how the
underlying recovery supports the forced-progress at the ap-
propriate steps. For example, consider protocol
�� � ��������	� ��� �� �	���
�� ����� ���� ��� �	���
 ���
�
�

(see Table 5). According to the forced progress assumption,
once the Merchant receives this order, it is forced to perform
the action (M, B, auth), provided all the data needed for the
latter are available. Often, it is in the satisfaction of the lat-
ter condition that guarantees come into play. In Section 3,

when we prove the correctness of the e-commerce scenario,
we show that the guarantees specified are sufficient to en-
sure that appropriate actions will occur.

2.4. End-to-end Correctness Properties

Besides using our framework to show how component
systems deliver their guaranteed properties, we can also
use it to reason about the correctness properties of the top-
level system. In particular we are interested in Money-
Goods Atomicity [9]. For example, we can show for the
E-commerce system that

� the correct exchange of goods for money is guaran-
teed. That is, no one loses or gains in the process (in
this scenario, to keep things simple, we do not model
profits, commissions, etc.): the Customer pays money
for goods, the Supplier receives money for goods, the
Bank and the Merchant neither gain nor lose goods or
money; and

� after a Customer has committed his/her order, the rest
of the actions, namely, payment, shipping, etc. are
guaranteed to take place, even if failures occur within
any of the parties involved.

Thus, once (a) the protocols observed by the interactions
between the components and (b) the guarantees provided by
one component to another are specified in the framework,
we can show both the functionality as well as recoverability
properties of the scenario using the framework.

These high-level properties can be viewed as guarantees
provided to a Customer, and encoded as the following 4-
tuple: ((C,M,order), (C,M,orderOK), (C,M,orderNO),

Customer will receive and pay for goods)
This guarantee is the view the user gets of the e-commerce

system as a whole. (The disable action (C,M,orderNO) ex-
presses the contingencies of item not in stock or customer’s
insufficient credit.)

3. An Electronic Commerce Scenario

In this section we examine in detail the Electronic Com-
merce scenario depicted in Figure 1. We begin with an in-
formal description of the system and its components and we
establish the guarantees and protocols governing the system
and its components. We then show how they yield the end-
to-end property of exchanging goods for money. In the next
section, when we unravel the details of one of the compo-
nents, the Bank, we show how the Bank’s guarantee holds,
making use of the guarantees and the protocols that govern
the the Bank’s database.

3.1. E-Commerce Actions and Timeline

Here we outline how an order is placed and processed6

indicating the actions that take place and the guarantees en-
abled and triggered. See Figure 1.

� GCB: The Customer has a standing agreement with the Bank that it
will pay the Bank for goods charged to the credit card.

� GMS: The Merchant has a similar agreement with the Supplier that
it will pay for goods (if and when they are delivered to Customer).

� (C,M, order): Customer browses, places an order for goods with
credit card.

� (M,B, auth): Merchant requests credit card authorization from
Bank.

� (B,M,authOK): Bank authorizes the charge, enabling its guarantee
GBM that it will accept charges (for the goods) if and when re-
quested.7

� (M,S, allot): Merchant asks Supplier to reserve the ordered goods if
they are in stock.

� (M,S, allotOK): Supplier allots goods to this order, guaranteeing
(GSM) to Merchant that it is ready to ship goods to Customer.

� (M,C, orderOK): Merchant confirms order to Customer. This causes
the Merchant to insert a record in its own database about the details
of the order and the details of the guarantees obtained from the Sup-
plier and the Bank.

This is a point of no return: the sale has committed.
All parties to the transaction have made the necessary guar-
antees for the rest of the e-commerce transaction, namely,
shipment, charges, payments, etc. to proceed successfully.
The parties involved now trigger the guarantees provided to
them, which eventually get discharged (see Figure 2):

� (M,S,shiptoC): Merchant tells Supplier to ship to Customer (i.e.,
triggers GSM).

6We assume the requests succeed, i.e., the Bank authorizes the charge,
and the Supplier allots the goods requested.

7The Bank’s refusal of an authorization is expressed instead with
(B,M,authNO), which does not enable GBM; similarly, the Supplier’s re-
fusal is action (M,S, allotNO). See Section 3.2.1.

� (M,B,pay): Merchant asks Bank to pay for the goods (via GBM).

When the Supplier receives (M,S,shiptoC), it triggers
� (S,M,pay): Supplier asks Merchant to pay (using GMS).

When the Bank receives (M,B,pay), its internals cause:
� (B,C,pay): Bank asks Customer to pay (using GCB).

At this point, all the guarantees have been triggered and
hence what remains is for the parties to deliver on their guar-
antees. These are indicated by the events (C,B,payment),
(B,M,payment), (M,S,payment), and (S,C,shipment).

3.2. Actions, Guarantees, and Protocols

For ease of explanation, we consider a situation where
the order processing proceeds smoothly, i.e., the Bank’s au-
thorization succeeds and goods allocation by the Supplier is
possible. Thus tables 3 and 5 are not complete, as they only
list the actions and protocols occurring in the simpler case.
We discuss how to complete the characterization in Section
3.2.1.

Table 4 summarizes the guarantees given and used by the
E-commerce components. Table 3 summarizes the actions
with their pre- and post-conditions. Table 5 summarizes the
protocols followed by the E-commerce components. (For
notation see Table 2.) The last five protocols (��-���) are
the least interesting –they appear to complete the specifica-
tion of the subsystems. For example, ��� simply says that
the Bank only grants authorizations previously requested.
The last one, ���, is redundant as it follows from ��, ��

and ��. We focus on the first six protocols (��-��).
Protocol �� expresses the Merchant’s business require-

ment of securing an authorization before confirming the or-
der to the Customer. Protocol �� expresses a similar re-
quirement for the goods.

Protocol �	 indicates that once the order is confirmed,
the Merchant will tell the Supplier to ship the goods to the
Customer. In turn, the Supplier will bill the Merchant by
protocol�
. Similarly with protocols�� and��. These four
protocols �	��
������ each respectively cause the trig-
gering of the guarantees ���������������, which in
turn ensure that eventually the respective shipping of goods
to�, and payments of� to �, � to�, and� to� take place,
completing the transaction.

Notice that protocols �	�����
��� are described in Ta-
ble 5 as “forcing” the action on their right hand side. Al-
though the forced-progress assumption means that each
subsystem must strive to advance following the protocols,
these four protocols are guaranteed to make progress by
the guarantees enabled at the time of the action orderOK.

3.2.1 Additional Actions and Protocols

In the treatment of this scenario we have omitted specify-
ing the behavior of the system when the order cannot be

Table 4. Electronic Commerce Guarantees.
Name enable action disable action trigger action discharge action
��� ����� ���	� ��� �� �	���
� FALSE �������� �����
�
 � ���������	�� ���
��� ���������� ��� �� ��
�
� FALSE ����� ��� ��� ��
�
� ���������	�� ���
��� ����� ������ ���
�
� �	���
� ������������ ��	���
� ����� ��� ��� �	���
� ����� ����	�� ���
��� ����� ������� �����
�
 � ������������� ���
�
 � ����� ������ ��� ��
�
� ����� ����	�� ���

Table 5. Some Electronic Commerce Protocols.
Name Action � Action Comments
�� ����������� ���
�
 � �	���
� � ��������	��� ��� ����
�
� order confirmed only if auth granted
�� ������������ �����
�
� � ��������	��� ��� ����
�
� order confirmed only if goods allotted
�	 ��������	��� ��� ����
�
� � ����� ������ ��� ��
�
� order confirmed forces shipping
�
 ��������	��� ��� ����
�
� � �������� ����	���
� order confirmed forces M charge B
�� ����� ������ �����
�
� � �������� �����
�
 � goods shipped forces S charge M
�� ����� ��� ��� �	���
� � �������� �����
�
� M charged B forces B charge C
�� ��������	� ��� �� �	���
� � ��������� ��� �	���
� ��
�
� auth. requested only if order in
� ��������	� ��� �� �	���
� � ���������� ��� ����
�
� goods requested only if ordered
�� ����� ����� ��� ����
�
� � ������������ �����
�
� allotted only if requested
��� ��������� ��� �	���
� ��
�
� � ����������� ���
�
 ��	���
� authorized only if requested
��� ��������	� ��� �� �	���
� � ��������	��� ��� ����
�
� order confirmed only if started

completed, but the reader can easily see how that is done.
Consider the situation in which the Bank decides to deny a
credit authorization, which in turn will cause the order to be
refused. To model that we need to add the corresponding
actions and protocols (but no new guarantees). The addi-
tional actions mirror the actions which “ok” requests to the
Bank and the Merchant, as well as an action to cancel the
guarantee from the Supplier if it is already enabled, and the
protocols that ensure the added actions happen in the correct
sequences. The new actions are:

� ����������� �����
�
� to signal the denial of the authorization
to the Merchant;

� ��������	��� ��� �� to signal the denial of the order to the Cus-
tomer;

� ������������� ���
�
 � with which the Merchant notifies
the Supplier it no longer wants the allotted goods (this is
���
�	 ���������). This action has the precondition that the or-
der be cancelled, i.e., that ���	��� happened.

Other protocols of interest are those expressing the behavior
of a negative outcome, complementary to the �� protocols
(see Table 5):

� ����������� ���
�
� � ��������	��� ��� �� �, which indi-
cates the order will be refused if charge is not authorized (cf. � �);

� ��������	��� ��� ��� ������������� ���
�
�, which effects
the cancellation (cf. ��).

A symmetric set of actions and protocols takes care of the
case when the supplier does not allot the requested goods.
If we want to specify a situation where the Merchant aborts
an order, it will simply abide by the protocols to undo the
partial work, adding the abort action.
That protocols and guarantees are useful, modular abstrac-
tions can be appreciated in the following examples.

Self-authorization. Consider a variant of the E-
commerce scenario in which the Merchant is allowed to au-

thorize some charges without consulting with the Bank. For
example, the Merchant can authorize a charge if the amount
is below a certain threshold. To accommodate this change,
we simply add a disjunctive clause to the enabling of the
guarantee, e.g.: ���	
� ������� is now:

����� ������ ������ �������� � � � 	�
�������

Merchant charges after delivery confirmation. Another
variant is to add the extra constraint that the Merchant will
charge only after receiving delivery confirmation from the
Supplier. One way to specify this is by adding another
element to the precondition of the charging action, e.g.:

Precondition(�����	�
 ����������)� �������� ���������

Alternatively, we can add the action
����� ��	����� ��������� for the Supplier to notify
the Merchant that the delivery of the goods succeeded, and
make that action the new ������� ���������.

3.3. Proof of the exchange of goods for money

Goods and money atomicity: None of the parties in-
volved lose money, either they get their costs reimbursed
or they get goods in exchange for their money. Intuition:
consider Figure 2 as a graph, where the nodes are the sub-
systems M, B, S, C, and there is an edge from X to Y if there
is a discharge action of the form (X,Y, pay) or (X,Y,ship).
This graph has a cycle, which shows that there is a net ex-
change of money � for goods � between S and C, with M
and B disbursing and receiving the same amount � each. To
prove the property, we need to prove that all four transfers
eventually take place (if the order has been confirmed); the
added benefit of our approach is that we prove it to hold in
spite of failures.

We need to prove that all four transfers (money, goods,
guaranteed to happen by the discharge of GBM, GSM, GCB,

GMS) will eventually take place if the Merchant commits
the order. This requires two things: (1) all four guarantees
are enabled; and (2) all four guarantees are triggered.

We prove that ����� ������� � � � ����� ���� �
�. The proofs that the other guarantees are discharged are
similar, and all hinge on the fact that the ����� �������
action is the point of no return for the sale business transac-
tion. This detail ensures the atomicity, i.e., that one transfer
happens iff all transfers happen. This payment action is the
discharge of guarantee GCB, so we prove it by showing that
the guarantee GCB is enabled, and that the triggering action
takes place.8

1. ������ ��������� � �: This requires proving that
����� ������ � � , which follows trivially from (the well-
formedness) protocol ��� which applies to the hypothesis
����� �������� � � .

2. ������� ��������� � �: The trigger action is �����	�
�.
We use the forced-progress hypothesis to prove
�����	�
� � � . This requires identifying a protocol
whose right-hand side is �����	�
�, and proving that its
left-hand side happens, i.e., that the preceding action took
place, and the precondition to �����	�
� holds. Such a
protocols is ��.

(a) �����	�
� � � . This follows from
������������� � � , protocol �
, and the precon-
dition to ����� 	�
� which requires ���������,
which holds by ����� �������� and ��.

(b) ���������	�
�� holds. It is a conjunct of
two conditions, both of which hold, as fol-
lows. ����� �������� and ��� yield ���������.
�����	�
� � � results from the previous part of the
proof.

�

The proof above illuminates where the recovery sup-
port is used to guarantee the desired system behavior. This
support appears in two guises: persistence and forward
progress. Persistence gives a component ability to preserve
state in spite of failures, which supports the guarantees,
by allowing a component to keep information necessary to
honor it.

A component’s failure recovery algorithm, which en-
ables it to keep trying the step following the last step com-
pleted before the failure (which is supported in part by the
atomicity of steps), is what underlies the forced-progress
hypothesis. Protocols only prescribe necessary conditions,
i.e., if a right-hand-side (rhs) happened, then its left-hand-
side (lhs) must have happened. Forced-progress endows the
protocols with the extra semantics akin to those of rule-
based systems, in that the occurrence of a rhs of a proto-
col always eventually happens if the lhs happened and the
precondition of the rhs holds.

8We use here guarantees that appear in Table 4, protocols in Table 5,
and actions and their pre- and postconditions in Table 3; we omit parame-
ters to reduce clutter.

Finally, we also rely on the persistence of the effects of
each step in spite of failures. For example, the Bank must
remember authorizations it has issued, and the Merchant
must remember authorizations it has received, in spite of
failures. In each subsystem, this is typically supported by
a database transaction system, whose recovery-related be-
havior can also be expressed also in terms of our actions,
guarantees, and protocols. In the next section we look into
the details of the Bank, to exemplify the fact that our for-
malism can be hierarchically applied.

4. A subsystem: The Bank

In the previous Section, we examined how the E-
commerce system achieves its end-to-end goods atomicity
property by examining the protocols and guarantees of its
high-level components. In this section we examine how the
Bank relies on its internal database to support the guarantee
it offers when it issues an authorization. In particular, we
show how the Authorization guarantee GBM follows from
the guarantees of the Bank’s database to the Bank.

When the Bank receives a request for a charge authoriza-
tion, it checks its accounts, and if appropriate grants the au-
thorization, recording the particulars in its accounts. When
the Bank receives a charge request accompanied by an au-
thorization, it consults its accounts and if appropriate makes
the payment, again recording the particulars. The Bank sur-
vives failures because its accounts reside in a database and
are updated by transactions.

4.1. Bank Subsystem and Timeline

We view the Bank as composed of two subsystems:
the banking Application A and the Database system D. A
is responsible for communicating with the Bank’s clients,
i.e., the Merchant and the Customer, and implementing the
Bank’s business rules via execution of transactions on D. D
is responsible for manipulating the accounts data within a
transactional framework. Following the scheme of Section
3.2, we list the actions within the Bank in Table 8, guar-
antees in Table 6, and some interesting protocols in Table
7. The protocols table is not complete, but as sample, note
that protocols ��� and ��

��
cover the two possibilities (of

whether the authorization is approved not); also note that
��� and ��
 correspond to the alternate implementations of
action ���� (see column 2, row 2 in Table 8). An interest-
ing detail in this scenario is Guarantee GXauth (see Table 6)
whose enabling and triggering action are the same, signify-
ing that the guarantee is obtained and triggered as a result
of the same requesting action.

The timeline for the Bank is simple: essentially, the Bank
reacts to messages it receives, and also runs internal actions
periodically to ensure bills are sent and charges paid. For
example, reception by the Bank of (M,B,auth) causes the

Table 6. Bank Internal and External Guarantees.
Name enable action disable action trigger action discharge action

����� ������ ����� ������ ����� ������

������ �������� �	���
� ��
�
� FALSE �������� �	���
� ��
�
� ��������	���
� �	������
��� �	���
� ��
�
� � � �	����� ��� �	���
� ��
�
 � � � �	�����

��
��� �������� �	���
� ��
�
� ����������	���
� ��������	���
�� � 	�������
��� �	���
� ��
�
� � � �	����� ��� �	���
� ��
�
� � �� �	����� �����
�
� �	���
� � ������ ��� ��� ��
���
 �

�������� �������� �	���
� ��
�
� ����������	���
� ��������	���
�� � 	����������	�� ���

��� �	���
� ��
�
� � � �	����� ��� �	���
� ��
�
� � �� �	�����
����	���
�������
 � �

����	����

���
�����

������ ���
�
 � �	���
�
�����

������� ��	���
�
�����

��� ����	���
�
���������	�� ���

Table 7. Some Bank Protocols.
Name Action � Action
��� ��������� � � �����

�� �	���
 � ��
�
� ��� �	���
� ��
�
�
��� ����� � ����� ������ �

��� �	���
 � ��
�
� ��
�
 � �	���
�
��

��
����� � ����� ������ �

��� �	���
 � ��
�
� ��
�
�
��	 ����� ��� � � ����

�� �	���
� ����	���
�������
 �
��
 �
��� � �������� �����
�
�
��� ���� � �������� �����
�
�

����	���
 �������
�

start of internal transaction Xauth (see Table 8) whose suc-
cessful commit records the authorization details and causes
the Bank’s response (B,M,authOK) (or (B,M,authNO) as ap-
propriate). More to the point, the commit of Xauth enables
guarantee GXauth9 (see Table 6) that the authorization in-
formation will be there when transaction Xpay looks it up
(via lookup, using ������).

4.2. Actions, Guarantees, and Protocols

The actions within the Bank are embodied by transac-
tions which update accounts in the Bank’s internal database,
and by receiving and sending messages. Actions are sum-
marized in Table 8, in which we use some ad-hoc notation,
as follows. The construct: receive message start ac-
tion end denotes that when the message is received by the
Bank, its Application subsystem will start action, a database
transaction. The construct: transaction program code
commit end denotes an atomic transaction, as supported
by the database transaction system, which updates the data
structures as indicated in program code. Finally, the con-
struct: eventually start action end denotes that the
application will make sure that action is executed eventually
(for example, by executing it periodically), provided that
any applicable preconditions on action are satisfied. With
this notation in mind and the remarks at the bottom row of
Table 8 we can examine the actions themselves.

9All guarantees internal to the Bank are given by the Database.

Action Xauth checks if there is enough credit left for the
customer for whom the Merchant requests a charge autho-
rization to cover the amount requested, and if so escrows the
amount from the customer’s credit line, records the details
of the authorization, and grants it by returning a message
with an authorization code to the Merchant. Because Xauth
is a database transaction, the Database grants a guarantee,
enabled by the commit of Xauth, that the updated states of
the data structures creditline, authSet will survive failures.
This enables the Bank to support both its external guarantee
GBM and its own internal business rules. An example of the
latter is that the Bank needs to keep track of all outstanding
authorizations for each Customer, lest it authorize over the
credit limit.

Xpay relies on the discharge of guarantee GXauth to val-
idate a request for payment (i.e., to trigger guarantee GBM,
identified by authid), to prepare the a payment to the Mer-
chant. Xpay also uses GXauth to prepare the corresponding
charge to the Customer. When Xpay commits, it triggers
guarantees GXbill and GXpayout.

The Bank application starts transactions Xpayout and
Xbill to effect the payments and charges set up by Xpay.
That these transactions will find all the pending payments
and charges is again guaranteed by the database system via
the commit of Xpay. The discharge of guarantee GXpayout,
and the protocol of eventually executing Xpayout support
the discharge of external guarantee GBM. We could have
folded Xpayout and Xbill into Xpay, but we wanted to em-
phasize the decoupling between the Merchant’s request to
be paid (served by Xpay), which is the triggering action for
guarantee GBM, and the effects, i.e., the eventual discharge
of guarantee GBM.

4.3. Proof of external guarantee from internals

For the proof in Section 3.3 that the Electronic Com-
merce scenario satisfies the end-to-end property of goods
and money atomicity, we took as a given the guarantees of-
fered by each of the subsystems. Now we turn our atten-
tion to the problem of proving that indeed those guarantees
hold, given a specification of the guarantor subsystem. With
our specification of internals of the Bank we prove that the

Table 8. Bank internal Actions.
Bank’s processing of Merchant auth request Bank’s processing of Merchant pay request Bank’s paying and billing

receive (M,B, auth: p,custid,ordid)
start Xauth (p, custid, ordid)

end

receive (M, B, pay: p, authid)
start Xpay (p, authid, M)

end

do eventually
start Xpayout
start Xbill

end

transaction Xauth (p, custid, ordid)
if credit[custid] < p

then send (M, B, authNO: ordid)
else creditline[custid] -= p

escrow[custid] += p
authid = newkey (authSet)
authSet += (p, custid,

ordid, pending)
send (M, B, authOK:

p, ordid, authid)
commit

end
// all auth info is persistent

transaction Xpay (p,authid,merchid)
if (aid = lookup(authid, authSet))

and (p =< aid.p)
then payoutSet +=

(p, authid, merchid)
billSet +=

(p, ordid, cid)
[OR send

(B,C,pay: p, ordid)]
// else: drop bad authid silently

commit
end
// info pay and bill is persistent

transaction Xbill
forall z in billSet

send (B, z.cid,
pay: z.p, z.ordid)

billSet -= z
commit; end

transaction Xpayout
forall z in payoutSet

send (B, z.merchid,
payment: z.p)

payoutSet -= z
commit; end

Xauth commits all the authorization-related infor-
mation, guaranteeing it will be possible to honor it
later.

Xpay does not pay the Merchant, but simply en-
sures that the payment, and the charge to the Cus-
tomer, are queued for processing later (or, Customer
may be billed immediately, see bracketed alternative
code).

Xpayout actually discharges the
guarantee GBM; Xbill triggers the
guarantee GCB (unless OR alter-
native is used, see left).

Bank’s (external) guarantee GBM holds.
We can now formalize the intuition that the guaran-

tee GXauth by the Database system to the Bank, com-
bined with the forced-progress protocol of the bank-
ing application, yields via GXpayout the external bank
guarantee GBM. Specifically, we need to prove that,
given the Bank’s internal guarantees and protocols and
that ����� ������ ������ � ������� occurs, the occur-
rence of ����� ��� ��� ������� ensures that eventually
����� ������� ���10 takes place.

1. �������� ������ ������� � �: We have
����� ������ ������ �������� � � by hypothe-
sis (������ ��������� happens). By protocol ���

and the forced-progress assumption, we have that
�������� ������ ������� � � . (Recall that the pre-
condition of ����� is TRUE.)

2. �	�
��������� �	������� � �: We have by hypothesis
(������� ��������� happens) that ����� 	�
 ��� ������� �
� , and by protocol ��	 and forced-progress, we get
�	�
��������� �	�������

3. ��������	�
���� ��� � �: The preceding items (1) and
(2) are the ������ �������������� and ������� ��������������
of guarantee ��	�
���, whose �������� �������������� is
��������	�
���� �� �� � � . ��	�
��� holds as it is
supported by the � database subsystem of the Bank 11 Note
that the persistence of the set payoutSet, ensures that the in-
formation recorded by�	�
 is found by transaction�	�
���

10These actions are 	��
�	 ���������, �����	� ���������, and
�������	 ���������, respectively.

11In turn, a proof of guarantee �������� can be done in terms of the
recovery system of the database transaction system.

4. �����	�
���� ��� follows from the meaning of send�

The proof above sheds light on how a higher-level prop-
erty (GBM) offered by a subsystem (the Bank) can be de-
composed in fairly abstract manner in terms of the subsys-
tem’s abstract internal properties, which in turn are built
on still-lower level mechanisms. The proof is simple be-
cause we do not concern ourselves with how the semantics
of transactions is supported within the Bank. Such seman-
tics we characterize abstractly via internal guarantees and
protocols (and the forced-progress assumption).

5. Related Work

Our focus has been the development of a framework that
can be applied across all levels of abstraction in systems
that employ transactions as building blocks. Many extended
transaction models have been developed over the years to
handle activities that have transactional components [4]. In
most of these, for example, those built from the saga model
[5], the basic building block for dealing with failures is
the notion of compensations.Whereas compensations allow
completed steps of a failed activity to be rolled back in an
application-specific way, they do not provide any abstrac-
tions for forward recovery. Some transaction models had
the notion of vital transactions to allow an activity to com-
mit even if some of the steps fail. What we have shown
is that by obtaining recovery-related guarantees, one step
of an activity can get the necessary assurance to commit
the effects of the activity (from a user’s perspective) while
continuing with the rest of the activity even after a failure.

In retrospect, the vital transactions can be designed to pro-
vide the necessary recovery guarantees for the activity to be
completed even after a failure.

Related work includes research on long-running activi-
ties such as workflows, long-running transactions in general
and e-commerce in particular (see [2, 3, 8]). Of necessity,
however, most of the descriptions are complex and rich in
details specific to the infrastructure, and lacking in abstrac-
tion; this makes it difficult to distinguish essential from in-
cidental aspects of the problem and its solution. Redressing
this difficulty is one of the goals of the framework devel-
oped in this paper.

6. Conclusions and Future Work

The need for a way to specify and reason about recov-
ery scenarios is pressing: new applications and recovery
schemes arise today that do not conform to the conventional
database recovery methods and assumptions. Examples in-
clude e-commerce applications, discussed at length in this
paper, as well as mobile applications,workflows, and robust
applications such as Phoenix[1]. Understanding, analyzing,
and designing recovery are challenging tasks, because re-
covery permeates many aspects of a system, from low-level
buffer management to high-level application semantics. It
is in this context that the value of our contributions lie.

In this paper, we presented a framework to specify
and reason about recovery by focusing on a classical e-
commerce application. We described the behavior and in-
teraction of an e-commerce system’s components in terms
of protocols (prescriptions of correct behavior) and guar-
antees (promises of future behavior one component makes
to another). Additionally, we precisely showed similarities
and differences across levels of abstraction, which show the
expressive power and broad applicability of our methodol-
ogy. Although not discussed here, our framework can also
be used to deal with the detailed protocols and guarantees
that govern a traditional transaction processing system [7].

Our specification framework exposes the abstract prop-
erties of the components that play a role in supporting the
current level’s end-to-end requirements. Each level is gov-
erned by protocols, which together with the guarantees at
that level allow the system to achieve its goals. Within the
components of a level, its subsystems, e.g., a database trans-
action system of a Bank, offers the support for the guaran-
tees made by the component. The database transaction sys-
tem in turn relies on the guarantee of persistence its recov-
ery system supports. For example, by updating its autho-
rizations and accounts data structures within a transaction,
the Bank obtains atomicity and durability which allow it to
offer its own guarantees which in turn contribute to achiev-
ing the end-to-end property of exchange of money for goods
in the E-commerce scenario.

We believe that this work can lead towards to a theory of
recovery in the broad sense of the term, including: how ab-
stract requirements of recovery can be mapped onto differ-
ent infrastructures, how different recovery requirements af-
fect requirements on infrastructure, and generally what are
the essential and what are the incidental components of re-
covery.

References

[1] R. S. Barga and D. B. Lomet. Phoenix: Making applications
robust. In A. Delis, C. Faloutsos, and S. Ghandeharizadeh,
editors, Proc. ACM SIGMOD Conference, pages 562–564,
Philadephia, Penn., USA, June 1999.

[2] F. Casati, S. Ceri, S. Paraboschi, and G. Pozzi. Specification
and implementation of exceptions in workflow management
systems. ACM Trans. on Database Systems, pages 405–451,
Sept. 1999.

[3] U. Dayal, M. Hsu, and R. Ladin. Organizing long-running
activities with triggers and transactions. In Proc. of the ACM
SIGMOD Conference, pages 204–214, May 1990.

[4] A. K. Elmagarmid, editor. Database Transaction Models
for Advanced Applications. Morgan-Kaufmann, San Mateo,
Calif., 1991.

[5] H. Garcia-Molina and K. Salem. Sagas. In Proc. of the ACM
SIGMOD Conference, pages 249–259, May 1987.

[6] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. ARIES: A Transaction Recovery Method Sup-
porting Fine-Granularity Locking and Partial Rollbacks using
Write-Ahead Logging. ACM Trans. on Database Systems,
17(1):94–162, Mar. 1992.

[7] C. Pedregal-Martin and K. Ramamritham. Analyzing, Spec-
ifying, and Reasoning to Guarantee Recoverability. Tech-
nical Report 01-03, Computer Science, University of Mas-
sachusetts, Amherst, Mass., Apr. 2001.

[8] H. Schuldt, A. Popovici, and H.-J. Schek. Automatic
generation of reliable e-commerce payment processes. In
Proc. 1st Int. Conf. on Web Information Systems Engineering
(WISE’00), Hong Kong, China, June 2000.

[9] J. D. Tygar. Atomicity in electronic commerce. In Proc. of
the 15th Annual ACM Symposium on Principle of Distributed
Computing, pages 8–26, May 1996.

