
Delegation: Efficiently Rewriting History

Cris Pedregal Martin and Krithi Ramamritham
Department of Computer Science

University of Massachusetts
Amherst, Mass. 01003–4610

cris, krithi@cs.umass.edu

Abstract
Transaction delegation, as introduced in ACTA, allows a

transaction to transfer responsibility for the operations that
it has performed on an object to another transaction. Dele-
gation can be used to broaden the visibility of the delegatee,
and to tailor the recovery properties of a transaction model.
Delegation has been shown to be useful in synthesizing Ad-
vanced Transaction Models.

Withan efficient implementationof delegation it becomes
practicable to realize various Advanced Transaction Models
whose requirements are specified at a high level language
instead of the current expensive practice of building them
from scratch. In this paper we identify the issues in effi-
ciently supporting delegation and hence advanced transac-
tion models, and illustrate this with our solution in ARIES,
an industrial-quality system that uses UNDO/REDO recovery.
Since delegation is tantamount to rewriting history, a naı̈ve
implementationcan entail frequent, costly log accesses, and
can result in complicated recovery protocols. Our algorithm
achieves the effect of rewriting history without rewriting the
log, resulting in an implementation that realizes the seman-
tics of delegation at minimal additionaloverhead and incurs
no overhead when delegation is not used.

Our work indicates that it is feasible to build efficient and
robust, general-purpose machinery for Advanced Transac-
tion Models. It also leads toward making recovery a first-
class concept within Advanced Transaction Models.

1 Introduction
The transaction model adopted in traditional database

systems has proven inadequate for novel applications of
growing importance, such as those that involve reactive
(endless), open-ended (long-lived), and collaborative (in-
teractive) activities. Various Advanced Transaction Models
(ATMs) have been proposed [7, 17], each custom built for
the application it addresses; alas, no one extension is of
universal applicability. To address this problem, we have
been investigating how to create general-purpose and robust
support for the specification and implementation of diverse

ATMs. Our strategy has been to work from first princi-
ples, first identifying the basic elements that give rise to
different models and showing how to realize various ATMs
using these elements, and then proposing mechanisms for
implementing these elements.

A first step was ACTA [6], that identified, in a formal
framework, the essential components of ATMs. In more
operational terms, ASSET [3] provided a set of new lan-
guage primitives that enable the realization of various ATMs
in an object-oriented database setting. In addition to the
standard primitives Initiate (to initialize a transaction), Be-
gin, Abort, and Commit, ASSET provides three new primi-
tives: form-dependency, to establish structure-related inter-
transaction dependencies, permit, to allow for data sharing
without forming inter-transaction dependencies, and dele-
gate, which allows a transaction to transfer responsibility
for an operation to another transaction.

Traditionally, the transaction invoking an operation is
also responsible for committing or aborting that operation.
With delegation the invoker of the operation and the transac-
tion that commits (or aborts) the operation may be different.
In effect, to delegate is to rewrite history, because a dele-
gation makes it appear as if the delegatee transaction had
been responsible for the delegated object all along, and the
delegator had nothing to do with it.

Delegation is useful in synthesizing ATMs because it
broadens the visibility of the delegatee, and because it con-
trols the recovery properties of the transaction model. The
broadening of visibility is useful in allowing a delegator
to selectively make tentative and partial results, as well as
hints such as coordination information, accessible to other
transactions. The control of the recovery makes it possible
to decouple the fate of an update from that of the transac-
tion that made the update; for instance, a transaction may
delegate some operations that will remain uncommitted but
alive after the delegator transaction aborted. Examples of
ATMs that can be synthesized using delegate are Joint Trans-
actions, Nested Transactions, Split Transactions, and Open
Nested Transactions [6, 8].

Cris Pedregal Martin
Appeared in Proceedings of the Thirteenth International Conference on Data Engineering, p. 266-275, Birmingham, UK, April 1997.

Biliris et al. [3] gave a high-level description of how
to realize the three new ASSET primitives. Briefly, per-
mit is done by suitably adding the permittee transaction to
the object’s access descriptor. Form-dependency is done by
adding edges to the dependency graph, after checking for
certain cycles. Whereas the realization of permit and form-
dependency are rather straight-forward, close attention must
be paid to logging and recovery issues in the presence of del-
egation. This is because recovery usually keeps some kind
of system history (e.g., log) and delegation is tantamount to
rewriting history (a delegated object’s operations appear to
have been done by the delegatee).

Our goal in this paper is to develop a robust and effi-
cient implementation of delegation that takes advantage of
existing, industrial-strength technology. To this end, we
consider log-based systems because logs are a feature of
many practical systems, which rely on logs for auditing and
other functions besides recovery. We do not consider alter-
native approaches requiring new, ad-hoc infrastructure that
may be easier to achieve, but does not integrate with existing
technology.

To further the goal of providing general purpose ma-
chinery to support the specification and implementation of
arbitrary ATMs, we have developed efficient implementa-
tions of delegation on two log-based recovery systems. For
lack of space we present here only our ARIES[13] -based so-
lution. In a longer version of this paper [15] we demonstrate
the correctness of the implementation and also discuss how
to implement delegation on EOS [4]. Our additions allow
the “efficient Rewriting of History,” so we call our protocol
ARIES/RH.

By providing delegation, we add substantial semantic
power to a conventional Transaction Management System
(TMS), allowing it to capture various ATMs. We efficiently
achieve this expressiveness by carefully “piggy-backing”
the delegation-related processing onto the routine process-
ing. During recovery, our algorithm neither adds costly log
sweeps to the recovery algorithm, nor does it demand the
rewriting of the log.
In this paper we argue that:

� Delegation is a powerful, important primitive for real-
izing ATMs. We describe its properties and show how
it can be used to manipulate visibility and recovery
properties of transactions.

� It is possible to implement delegation in an industrial-
strength transaction management system such as
ARIES, such that when delegation is not used no over-
heads are incurred. Development of a provably cor-
rect and efficient implementation is a very important
contribution because it shows that a generic, flexible,
and practical ATM facility can be produced.

The remainder of the paper is organized as follows. In
section 2 we describe the properties of delegation and show

how it can be used to synthesize some well-known ATMs.
In section 3 we develop delegation in the context of a robust,
industrial-grade transaction management system. First we
explain delegation’s semantics in terms of rewriting history.
We then discuss the needed data structures and describe
how we modify both the normal processing and the recov-
ery phases to support delegation, and explain how to apply
our algorithm to ARIES. In section 4 we discuss why our al-
gorithm efficiently implements delegation. In section 5 we
review related work; in section 6 we present our conclusions
and discuss future work.

2 Delegation: Properties and Examples
In this section, first we introduce some notation, then we

explain delegation in terms of visibility and recovery, and
then point out its important properties. Finally, we present
examples of ATMs and show how to synthesize one of them
using delegation.

2.1 What: Concepts and Properties
Here we describe the properties of delegation, introduce

notation and state our assumptions.
� t� t�� t�� t�� ��� denote transactions; ob� a� b� ��� denote ob-

jects in the database.
� update is a generic operation on database objects. We write
updt�ob� and leave other details of the update unspecified.
Updates are done in-place on the updated object. Note that
not all update operations conflict with each other.

� delegate�t�� t�� updt�ob�� denotes delegation by t� to t�
of updt�ob�.

� Invoking transaction. We call the transaction that invoked
the update on the object the invoking transaction. We write
updt�t� ob� when we wish to indicate that t is the invoking
transaction for that update.

� H denotes the history of the database,which contains events
such as delegate and update, with a partial order indicated
� � �� where � precedes ��. Operation invocations are
events.

� ResponsibleTr. A transaction responsible for an update is
in charge of committing or aborting it, unless it delegates it:
ResponsibleTr�updt�ob�� � t holds from when t performs
updt�ob� or t is delegated updt�ob� until t either terminates
or delegates updt�ob�.�

� Op List. The dual of ResponsibleTr is the Op List.
It contains the operations a transaction is responsible for:
Op List�t� �
� fupdt�ob� j ResponsibleTr�updt�ob�� � tg�

Pre- and Postconditions. When t� executes
delegate�t�� t�� updt�ob��, we say that t� transfers its re-
sponsibility for updt�ob� to transaction t�, i.e.,

� pre�delegate�t�� t�� updt�ob����
�ResponsibleTr�updt�ob�� � t��
t� must be the transaction responsible for updt�ob� in order
to delegate the update.

�Notice that without delegation, the transaction responsible for an up-
date is always the invoking transaction.

� post�delegate�t�� t�� updt�ob����
�ResponsibleTr�updt�ob�� � t��
After t� delegatesupdt�ob� to t�, t� becomes the responsible
transaction for the update.

Operation delegate�t�� t�� updt�ob�� is well formed
when t� and t� are initiated and not terminated, and t�
is responsible for updt�ob�.
Commit/Abort of Updates. In the presence of delegation, the
fate of updates to an object is that of the transaction to which
the operation was last delegated. For instance, if t� does
updt�ob�, then delegates updt�ob� to t�, and t� subsequently
aborts, the changes t� made to ob via updt�ob� will still
survive if t� commits while it is still responsible forupdt�ob�:

� (Commit�t� � H���
��updt�ob� � Op List�t� � �committ�updt�ob�� � H��

That transaction t commits means that all of the updates in
its Op List must be committed. Notice that these are the
updates for which t is responsible.

� (Abort�t� � H���
��updt�ob� � Op List�t�� �abortt�updt�ob�� � H��
That transaction t aborts requires that all of the updates it is
responsible for (i.e., those in its Op List) will be aborted.

The events Commit�t� and Abort�t� denote the com-
mit and abort of transaction t, and committ�updt�ob�� and
abortt�updt�ob�� indicate the permanence or obliteration of
the changes done by updt�ob�. In the presence of delega-
tion, the changes may have been made by either t or other
transaction(s) which eventually delegated updt�ob� to t.

Granularity: delegating one operation vs. set of operations. In
what we have discussed, a transaction delegates a single
operation with each invocation of delegate. Delegation of
a set of operations in a single invocation can be considered
as the atomic invocation of multiple delegations, one for
each of the operations in the set. Delegating an object is
tantamount to delegating all the operations on that object.

In our implementation we consider the delegation of ob-
jects because in a majority of practical situations that we
have come across, delegation occurs at the granularity of
objects. Also, in the examples discussed in the next subsec-
tion, transactions delegate objects.

Other Properties of Delegation. An operation can be dele-
gated only by the transaction that is responsible for it. Since
ResponsibleT r�updt�ob��, is at any given time, unique,
only one transaction can delegate an operation at any point.
Thus, while a history may contain two or more delegations
of the same operation by different transactions, the delega-
tions for the same operation cannot occur concurrently.

Note that it is possible for several transactions to update
an object concurrently (say, when the updates commute).
Delegation of one such operation by one of the concurrent
transactions only delegates that transaction’s operation on
the object. The other transactions’ operations are not af-
fected. Similarly, when a transaction delegates an object,
only that transaction’s operations on the object are delegated.

Also note that a transaction can perform operations on an
object even after it has delegated (an operation on) that ob-
ject. Of course, since after delegation the system considers
the delegated operations to have been done by the delegatee,
a transaction’s new operation may conflict with one of its
own — one which has been delegated.

2.2 Why: Synthesizing ATMs – Examples
In this section we motivate delegation through examples

of its application in the synthesis of ATMs. Other examples
can be found in [6, 5].

Inheritance in Nested Transactions [14] is an instance
of delegation. It is achieved through the delegation of all
the changes the child transaction tc is responsible for to its
parent tp when tc commits.

A transaction can delegate at any point during its exe-
cution, not just when it aborts or commits. For instance,
in Split Transactions [16], a transaction t� may split into
two transactions, t� and t�, at any point during its execu-
tion. Operations invoked by t� on objects in a set ob set
are delegated to t�. t� and t� can now commit or abort
independently. (Thus, a split transaction can affect objects
in the database by committing and aborting the delegated
operations even without invoking any operation on the ob-
jects.)

Consider the following code used by t� to split off trans-
action t� (the code for t� is that of function f .)

t2 = initiate(f);
delegate(self(), t2, ob_set); // self returns t1
begin (t2);

t� can join t� by executing:
wait (t2);
delegate (t2,t1); // t2 delegates *all* objects

3 How: Rewriting History Efficiently
In this section we discuss how to efficiently implement

delegation and present our algorithm RH (rewrite history),
as follows. In 3.1 we give the operational semantics of
delegation. In 3.2 we examine alternative solutions and give
an overview of our algorithm. In 3.3 we set the stage with an
overview of ARIES, whose UNDO/REDO protocol requires
two passes, one forward and one backward, over the log.
The followingsubsections explain the algorithm ARIES/RH
in detail: we present the data structures involved in 3.4, then
we describe in 3.5 what ARIES/RH does during normal
processing. In 3.6 we discuss how ARIES/RH’s recovery
realizes delegation efficiently using the same passes over
the log as ARIES.
3.1 Operational Semantics

In a generic Database System the log is the system’s his-
tory, as it contains the records of all updates and transactional
operations. The idea of delegation is to rewrite history, se-
lectively altering the log. Suppose that delegate�t�� t�� ob�
is the first delegation of ob by t�. Applying this delegation

K � currLSN (LSN of delegate record)
while LOG[K] is not the initiate record for t�

if LOG[K] is an update to ob by t�
then setTransID(K,t�) now looks as if done by t�

K � prevLSN(K,t�) follow t�’s BC

Figure 1. Op. Semantics of delegate�t�� t�� ob�

can be visualized as iterating through the log into the past,
modifying the records pertaining to ob, so that each record
of an access to ob by t� will now show that the access was
done by t�.

Figure 1 gives the operational description of delegation
in terms of the log, for a scenario where K indicates the LSN
being operated on in the current iteration. Records have a
PrevLSN field, that contains the LSN of the previous record
for the same transaction. The chain formed by the previous
LSN pointers of log records of a transaction is called Back-
ward Chain (see section 3.3). The delegate record is a
new type of log record for delegation, with pointers to the
previous records of both the delegator and delegatee (see
section 3.4).
In figure 1 we use the following operations on the log:

prevLSN(K, t�) which returns the Log Sequence Number
of the previous (most recent) log record written by t� (i.e.,
before, or to the left of K).

setTransID(K,t�), which does LOG[K].TransID � t�,
making the record appear as if it had been written by the
transaction t�.

The fields in a log record are: LSN (log-sequence num-
ber), Type (update, delegation, commit, etc.), Trans-ID (the
ID of the transaction the record pertains to), and Data. For
delegate records there also exist two LSN pointers, one to
the delegator and another to the delegatee (see section 3.4).

Example 1. Consider the log fragment (see fig. 2):

…updt�t�� a�� updt�t�� x�� updt�t�� a��
updt�t�� b�� updt�t�� a�� updt�t�� y�

After the application of delegate(t�� t�� a), the log
looks like:

…updt�t�� a�� updt�t�� x�� updt�t�� a��

updt�t�� b�� updt�t�� a�� updt�t�� y�

t2t1 t2 t2 a
update

t1 t2t1 t2t2 t1 t2
a y ab

update update update delegate
a x

update update

100 101 102 103 104 105 106

t2 a
update

y a
update delegate

ab
update update
t t1 t2 t1 t21

before rewriting

t1 a x
update update

100 101 102 103 104 105

t2

106

after rewriting time

Figure 2. Log in Example 1.

3.2 Implementing Delegation Efficiently
The idea of rewriting history by modifying the log is

simple, but its implementation is not. The naı̈ve implemen-
tation of the algorithm in figure 1 (apply each delegation to
the log as the delegation is issued) carries high performance
costs, due to the per-delegation random-access to the log,
and is also hard to prove correct because we manipulate the
log outside the usual append-only mode, complicating the
model with extra data.�

The observation that during normal processing the log
is not consulted suggests an algorithm that keeps track of
the effect of delegations in volatile data structures, and logs
the delegations. After a a crash the delegations can be
applied by modifying the log – rewriting history – during
recovery. Still, one must address issues of performance
and correctness in the face of failure, because the log is
accessed/modified randomly. Correctness is ensured if each
BC switch is done atomically.� Performance, however, is
hostage to the way the log is accessed. In general, the
log does not fit wholly into volatile storage, resulting in
thrashing, as the algorithm needs to jump over possibly
large sections of the log to follow backward chain pointers.

To avoid these pitfalls, we propose RH, a “lazy” algo-
rithm for rewriting history that does not modify the log, as
follows. During normal processing, we use a volatile ta-
ble to keep track of which objects are updated by which
transactions. When a delegation happens, we change the
corresponding object binding, and log delegations – to be
able to reproduce the change after the crash. During re-
covery, on encountering delegations during the log sweeps,
we reconstruct the bindings between operations on objects
and transactions, but do not actually rewrite the log records.
Thus we “rewrite the history” of the system not by modi-
fying the log, but by interpreting the log during recovery
according to the delegations.

3.3 Conventional Recovery: ARIES
We review ARIES to establish context and terminology.

ARIES uses an UNDO/REDO protocol, which means that after
a crash, updates by a loser (uncommitted) transaction will be
undone and those by a winner (committed) redone. ARIES
scans the log in three passes, see figure 3.�

The (forward) Analysis pass updates the information on
active transactions and determines the “loser” transactions.
The (forward) Redo pass repeats history, writing to the
database those logged updates that had not been applied
to the database before the crash; this re-establishes the DB
state at failure time, including uncommitted updates. The

�Extra data: information accessed by transactions that is not part of the
database schema; for example, the log, the system clock, wait-for graph.
Gehani et al. [8] discuss the issues of correctness with extra data.

�It is easier to tolerate unusual log manipulations during recovery than
during normal processing.

�Some variants of ARIES merge the two forward passes into one, thus
we also use only one forward pass.

Analysis

Redo All

Undo Losers

PASSES

Checkpoint Failure

LOG

Failure

Figure 3. ARIES passes over the log.

(backward) Undo pass rolls back all the updates by loser
transactions in reverse chronological order starting with the
last record of the log.

ARIES keeps, for each transaction, a Backward Chain
(BC, see figure 4). All the log records pertaining to one trans-
action form a linked list BC, accessible through Tr List,
which points to the most recent one. ARIES inserts com-
pensation log records (CLRs) in the BC after undoing each
log record’s action.� Applying delegate�t�� t�� ob� is tanta-
mount to removing the subchain of records of operations on
ob from BC�t�� and merging it with BC�t��. But this is not
a viable implementation as it would demand unacceptably
frequent, random accesses and updates to the log; instead,
we have devised efficient algorithms that support delegation
without modifying the log, which we discuss next. First
we present the data structures, and we explain the normal
processing. We then examine recovery processing, first the
forward (analysis & redo) pass and then the backward (undo)
pass.

t2 t2 a
update

y a
update delegate

ab
update update
t t1 t2 t1 t21

 BC(t1)

BC(t2)

time

t1 a x
update update

100 101 102 103 104 105 106

Figure 4. Backward Chains in the log.

3.4 Data Structures
We must know which operations on which objects each

transaction t is responsible for, i.e., its Op List�t� (see
section 2.1). For that we use the Transaction List and ex-
pand each transaction’s Object List found in conventional
Database Systems; we also add a delegate type log
record.
Tr List. The Transaction List [2, 10, 13] contains, for each
Trans-ID, the LSN for the most recent record written on
behalf of that transaction, and, during recovery, whether a
transaction is a winner or a loser.�

Ob List. For each transaction t there is an Ob List�t� (In
figure 7, Ob List�t�� contains the objects t� is accessing

�To avoid undoing an update repeatedly should crashes occur during
recovery.

�For each transaction t, Tr List�t� contains the head of the BC(t).

field name function

LSN position within the LOG
tor transaction id of delegator

torBC delegator’s backward chain
tee transaction id of delegatee

teeBC delegatee’s backward chain

Figure 5. Fields of the delegate log record

after the delegation.) In terms of Op List: Ob List�t� �
fob j �updt�t�� ob� � Op List�t�g, i.e., the objects for
which there is an update for which t is responsible. The
update may have been invoked by t� and the responsibility
transferred to t via delegation.

When transactions are responsible for specific updates
(not a whole object), a certain object may appear in more
than one Ob List (but the associated updates will be
different).� We identify the updates that a transaction is
responsible for by introducing the notion of scope.

t2(, 101, 101)

t2(, 105, 105)

2Ob_List (t)

t2 , 102, 102)(a

x

y

object Scopes

1 Ob_List (t)

t1(, 100, 104)

t1 (, 102, 106)

object

b

Scopes

a

Figure 6. Ob Lists before delegation, Ex. 1.

For each object ob in Ob List�t�� there is a set of scopes
Scopes, that covers the updates toob for which t� is currently
responsible. A scope is a tuple �t�� l�� l�� where t� is the
transaction that actually did the operations (the invoking
transaction), l� is the first, and l� the last LSN in the range
of log records that comprise the scope. This indicates that
t� is responsible for all updates to ob (by t�) between and
including the two LSNs.	 See figure 7.
Delegate Log Records. We add a new log record type:
delegate. Its type-specific fields (see figure 5) store the
two transactions and object involved in the delegation.

3.5 Normal Processing
We describe ARIES/RH in terms of how different events

are processed, focusing on the differences with ARIES. (The
current value of the log sequence number is CurrLSN.)

� begin�t�

1. INITIALIZE. Add t to Tr List; create Ob List�t�.

� updt�t� ob�

1. ADJUST SCOPES. If this is the first update of t to ob
since either t started or last delegatedobwe must open
a new scope. Otherwise, there is an active scope of t
on ob that we must extend.

�For example, this can occur in the case of non-conflicting updates,
such as increments of a counter.

	This allows us to compute ResponsibleTr (and Op List) without
having to store/update it with each update.

t1 (, 102, 106)

a

1 Ob_List (t)

t1(, 100, 104)

object

b

Scopes

t2(, 101, 101)

t2(, 105, 105)

t2 , 102, 102)(

t1(, 100, 104)

2Ob_List (t)

a

x

y

object Scopes

Figure 7. Ob Lists after delegation, Ex. 1.

if ob �� Ob List�t� then
Ob List�t� � Ob List�t� � fobg ;
if �t� � �
 �� Ob List�t��ob�

then Ob List�t��ob��Scopes�
(t, CurrLSN,CurrLSN) create new scope

else Ob List�t��ob��Scopes� (, ,CurrLSN)
extend existing scope

� delegate�t�� t�� ob�
1. WELL-FORMED? Verify that ob � Ob List�t��,

which tests, for this case, the precondi-
tion in 2.1: pre�delegate�t�� t�� updt�ob��� �
�ResponsibleTr�updt�ob�� � t��.

2. PREPARE LOG RECORD(S).
(a) Record delegator, delegatee:

Rec�tor� t�; Rec�tee� t�;

(b) Link record into t�’s and t�’s backward chains:
Rec�torBC � BC�t��� BC�t�� � Rec
Rec�teeBC � BC�t��� BC�t��� Rec.

3. TRANSFER RESPONSIBILITY. Move operations on ob
from Op List�t�� to Op List�t��.
(a) Add ob to delegatee’s Ob List and record that

ob was delegated by t�:
Ob List�t�� � Ob List�t�� � fobg ;
Ob List�t���ob��deleg� t�.

(b) Pass delegator’s Scopes for ob to the delegatee:
Ob List�t���ob��Scopes�
Ob List�t���ob��Scopes �
Ob List�t���ob��Scopes ;

(c) Remove ob from the delegator’s Ob List:
Ob List�t��� Ob List�t��	 fobg�

Remark: We use a union because t � may already be
responsible for some operations on ob before receiv-
ing the delegation. Therefore, the Scopes field may
actually contain several scopes: contiguous ranges of
LSNs on the log, each tagged with the transaction that
initially was responsible for that scope, which is the
invoking transaction for those updates. (Notice that
the scopes may overlap on the log segment they cover
but then cannot share the same invoking transaction.)

4. WRITE DELEGATION LOG RECORD(S).

Write log record and mark it as the current head of
the backward chains of delegator and delegatee.

LOG[CurrLSN] � Rec;
BC�t�� � CurrLSN;
BC�t�� � CurrLSN.

‘ ’ denotes a field that we do not change or are not interested in.

� commit�t�

1. COMMIT OPERATIONS. Write to the log the operations
for which t is responsible.

2. WRITE COMMIT RECORD. Write a commit record to
the log after the operations.

3. FLUSH LOG. Write to stable storage all records in the
log, from the previous flush point up to the commit
record inclusive.

� abort�t�

1. ABORT OPERATIONS. Undo the updates for which t is
responsible. (Recall that any object previously delegated
by the aborting transaction is no longer in the transaction’s
Ob List, unless it updated it after the delegation.) Obtain
minLSN � min fbegin j Ob List�t��ob��Scopes�
� � begin� �g on objects in Ob List�t�. For each
object in Ob List�t�, undo all updates contained in
its Scopes, writing to the log the compensation log
records, going backwards in the log until minLSN is
reached.

2. WRITE ABORT RECORD. Write abort log record to log.
3. FLUSH LOG. Flush log up to abort record.

We process other transactional events as usual [10, 13].
Note: The preceding algorithm assumes that delegation is

used often, but the overhead for transactions that do not use
delegation can be reduced to a minimum with the following
optimization. We delay creation of an object’s entry in a
transaction’s Ob List until the transaction either delegates
or is delegated some operations on that object. We can do
that because we can assume that the first scope for an ob-
ject (i.e., the scope for the first time the object is delegated)
without an entry in Ob List spans from the begin LSN to
the delegate LSN of the delegating transaction, instead of
starting at the first update of the transaction to that object.
Furthermore, when a transaction delegates an object it re-
moves the associated scopes but keeps an empty entry in its
Ob List, so that it knows to open a new scope when and
if it accesses the object later. Without the retention of this
entry it could erroneously assume that the scope starts at
the begin LSN. If the algorithm is modified in accordance
with this change, when delegation is not used it reduces
to the traditional algorithm. (This also reduces the size of
the object lists – maintained in main memory – since only
entries pertaining to delegated objects need be maintained.)
Thus, the only extra work for non-delegated objects during
normal processing is checking whether they have an entry
in Ob List. For details see [15].

3.6 Crash Recovery
After a crash, the transaction system must recover to a

consistent state, restoring the state from a checkpoint (re-
trieved from stable storage), and using the log (also from
stable storage) to reproduce the events after the checkpoint
was taken. For simplicity of presentation, we ignore check-
points from now on, but it is easy to see how data structures

can be rebuilt using checkpoints instead of going back to the
beginning.��

In the rest of this section,we present the recovery phase of
ARIES/RH, which includes a forward pass and a backward
pass. Here Crash is the event that represents a failure;
RecoveryComplete indicates that the recovery is complete.
Winners and Losers are as described in 3.4.

3.6.1 Forward Pass
Before the first pass of recovery starts, Winners �
Losers � �. At the end of the forward pass Winners,
Losers, and Object Lists are up to date, including the scopes
of the updates.��

� begin�t�

1. INITIALIZE. Add t to Tr List; create Ob List�t�.
2. LOSER BY DEFAULT. Consider t a loser by default.

Losers� Losers� ftg.

� updt�t� ob�

1. ADJUST SCOPES. This is done just as in step (1) of
update in normal processing.

2. REDO. Redo updt�t� ob�.

� delegate�t�� t�� ob�

1. TRANSFER RESPONSIBILITY. This is done just as in
step (3) of delegate in normal processing.

� commit�t�

1. COMMIT. Declare t committed. Notice that t’s updates
were redone during this forward pass.

2. WINNER. Declare t as a winner.
Winners� Winners � ftg;
Losers� Losers	 ftg.

After the Forward Pass the state is as follows.

� Ob Lists are restored to their state before the crash, for all
transactions.

� Winners has all the transactions whose updates must survive
(i.e., which had committed before the crash). Losers has
those whose updates must be obliterated.

� LsrObs includes all objects in the Ob Lists of loser trans-
actions. We compute it after the forward pass ends, as

LsrObs �
�

t�Losers

Ob List�t��

3.6.2 Backward Pass
To undo loser transactions, ARIES continually undoes the
update with maximum Log Sequence Number (LSN), en-
suring monotonically decreasing (by LSN) accesses to the
log, with the attendant efficiencies.

ARIES undoes all the updates invoked by a loser transac-
tion. In the presence of delegation, what we need instead is
to undo all the updates that were ultimately delegated to a
loser transaction. Notice that by undoing the loser updates

��For instance, the scope information is saved at checkpoints.
��We only describe the treatment of the log records relevant to delegation;

other records are processed as usual.

begLsrScopes

no loser scopes

loser scopes
backward sweep

begCluster
K

already donecurrent cluster

Figure 8. Loser scope clusters in the log.

instead of the updates invoked by loser transactions, we are
in fact applying the delegations, as we undo according to
the fate of the final delegatee of each update.��

An extension analogous to ARIES involves constructing
and maintaining backward chains of loser updates, an expen-
sive solution. Or one could scan all log records backwards,
identifying the loser updates (to be undone), which are the
updates whose responsible transaction is a loser. This is
also undesirable as it unnecessarily inspects many winner
updates.

Fortunately, the information of update scopes suffices to
efficiently undo loser updates. In the rest of the section
we discuss how undo and delegation are integrated in the
backward pass. Update and delegation are the only records
that require special processing.

Recall that scopes keep track of updates that were del-
egated together (see section 3.4). It is enough to inspect
records within the loser transaction scopes to find all loser
updates. To do it efficiently, we introduce the notion of a
cluster of scopes. Scopes may overlap; a cluster of scopes
is a maximal set of overlapping scopes. (We only care about
“loser” clusters of scopes, so we omit “loser” from now
on.) Within each cluster we must examine every log record,
but between clusters we examine none. For instance, in
figure 8 there are three clusters; the middle one contains
four overlapping loser scopes. The last cluster has already
been processed, and we are processing the middle cluster (K
indicates the current log record). The current cluster begins
at begCluster; the first (i.e., to be processed last) cluster in
the log begins at begLsrScopes.

We can now outline the algorithm for the backward pass
of ARIES/RH.��

Within a loser cluster we examine all records, undoing
loser updates. We also adjust the current cluster by adding
or deleting scopes, closing it when we reach its first record,
at begCluster. The algorithm ends when we reach the be-
ginning of the first cluster, at begLsrScopes.

We begin by computing LsrScopes, the set of all the
scopes covering loser updates. LsrScopes contains 4-
tuples:�� the object, the invoking transaction, and the two
LSN values for the range of update records. We compute

��In ARIES, all loser updates are those invoked by loser transactions, so
ARIES/RH reduces to ARIES when there is no delegation.
��References in parentheses correspond to the algorithm in figure 9.
��The scopes of section 3.4 plus the object id.

begLsrScopes which marks the beginning of the leftmost
(oldest) loser scope in the log. We start sweeping the log
backwards (i.e., right-to-left in figure 8) from the end of the
rightmost loser scope, and end at begLsrScopes (see while
loop). This sweep consists of two steps: we identify a clus-
ter and undo all the loser updates in its component scopes
(�); and we move to the next cluster once the current one is
exhausted (�).

We process a cluster (�) in four steps. First, we check
whether the current record is the right end of a scope, in
which case we add the scope to the current cluster (��).
Then we check if the record is a loser update, and if so
we undo it (��). A record is a loser update if it is within
the ends of a loser scope whose invoking transaction is the
same as the update’s invoking transaction. Then we check
if a scope ended in the record just processed, in which case
we remove it from the current cluster, because the scope has
already been treated (��). Finally we move K (left) to the
next record (�).

The next cluster to process begins at the end of the now
rightmost scope in LsrScopes (�), because when we add a
scope to Cluster we remove it from LsrScopes (��).

The repeat loop ends because we decrement K by at least
one on each iteration, and although ���’s limit begCluster
may decrease, it may never go below begLsrScopes (be-
cause begLsrScopes is the minimum of scope begins), so
eventually K reaches it. The while loop ends because we
decrement K by at least one each time ��� (and more when
we skip between clusters ���).

Notice that we visit each log record at most once and
in a monotonically decreasing way. This reduces the cost
of bringing the log from disk. We construct the set of
scopes LsrScopes once and deplete it in the reverse order
of scopes, so it can be kept in a priority queue (on a heap)
sorted by right end of scopes, with the largest value first.
We follow invoking transactions to process the set of scopes
Cluster; we add scopes on the left and delete scopes on the
right. A binary tree keyed on transaction ids is a reasonable
implementation.

Transaction Rollback
In the preceding we discussed how to support the more com-
plex recovery from a Crash, which forces the abortion of
many in-progress transactions. Rolling back a single trans-
action (aborted because of a logical error, deadlock, etc.) is
similar. As before, we must undo only the (loser) updates
for which the transaction t is responsible at abort time. We
only sketch the algorithm here in the interest of space. For
each object in Ob List�t�, we must ensure the updates are
undone. We construct the set of loser object scopes (see
figure 9) and we process it undoing the updates in reverse
chronological order. The main issue is the manipulation of
the log in the buffer, which must be done carefully to pre-
serve consistency in the face of failures. We adopt a strategy

See sections 3.4 and 3.6.2 and figure 8 for explanations of
the variables used in this algorithm.

LsrScopes� f ob, scope j
ob�
t � Losers � all loser
scope � Ob List�t��ob��Scopesg scopes

if LsrScopes �� � then
begLsrScopes� min {left j (, , left,) � LsrScopes }

start of earliest scope
K� max {right j (, , , right) � LsrScopes }

end of latest scope
Cluster� � ; begCluster� K
while begLsrScopes� K K sweeps backwards to left

end of earliest loser scope
��) repeat identify & process overlap’g scopes cluster

��� add to Cluster the loser scope that ends in K
if
 (, , left, K) � LsrScopes then

Cluster� Cluster � {(, , left, K)}
put in Cluster

LsrScopes� LsrScopes	 {(, , left, K)}
and remove from LsrScopes

begCluster� min (left, begCluster)
updating where cluster starts

�	� undo if it is loser update
if LOG[K] � updt�t� ob� and

 (ob, t, ,) � Cluster then

undo(updt�t� ob�)
CLR.PrevLSN� LOG[K].PrevLSN

�
� discard scope that begins at new record LOG[K]
if
 (, , left,) � Cluster and K � left then

already processed, so discard
Cluster� Cluster	 {(, , left,)}

��� processed record LOG[K], next (left) …
K� K 	�

�end �� until K � begCluster
finished this cluster (sweep backwards)

��� find next cluster of scopes
K � max {right j (, , , right) � LsrScopes}

RecoveryComplete

Figure 9. Backward pass of ARIES/RH

similar to that of ARIES/NT [18], writing CLRs as we undo
the updates.

4 ARIES/RH is efficient
ARIES/RH, presented in sections 3.5 and 3.6, is correct

and efficient. To ensure correctness in a recovery proto-
col, we must guarantee that, after recovery, all updates by
loser transactions have been rolled back completely (their
effects obliterated) and all updates by winner transactions
have been committed (their effects made permanent). Con-
ventional ARIES complies by using the UNDO/REDO proto-
col. With delegation, we must also ensure that operations
ultimately delegated to loser transactions will be aborted,
and operations ultimately delegated to winner transactions
will be committed. For lack of space we omit the proof here,
which can be found in our technical report [15].

The rest of this section argues that ARIES/RH is efficient.

� No delegation: negligible overhead. With the optimiza-

tion outlined in the note in 3.5, in the absence of delegation

ARIES/RH reduces to the original algorithm plus a test:

at updates, checking whether there is an entry for the ob-

ject in the Ob List. Thus the penalty when the delegation

functionality is not used is negligible.

� Normal processing: low overhead. Posting one delega-

tion during normal processing has the cost of adding a log

entry and updating the object bindings. The cost of delega-

tions is linear in the number of operations delegated. For

instance, the updating of Object Lists for a delegation is

linear in the length of the Ob Lists.

� Recovery: low overhead. The costs of the recovery passes

are similar to those of conventional ARIES; ARIES/RH

does not add any extra passes. For all operations, sup-

porting delegation only entails costs at most linear in the

number of delegated operations (see previous item). Also,

recovery costs are dominated by disk log accesses, which

ARIES/RH does as efficiently as ARIES. For instance, on

the backward pass, log records are visited at most once and

in strict decreasing order, as in ARIES, allowing for the

usual optimizations.

The first two points follow from the fact that ARIES/RH
only adds some fields to data structures that are similar to
those used by the conventional algorithm. When there is
no delegation, these extra fields are not used. Delegating
adds the constant time of logging the delegation operation
and updating the Ob Lists of the delegator and delega-
tee transactions by moving as many scopes as objects are
delegated (hence the linearity), affecting Ob Lists, which
reside in main memory and can be organized for efficient
lookup/update. (At transaction termination the Ob List can
be simply discarded.)

As for recovery, ARIES/RH’s forward pass incurs the
same overhead as ARIES does to reconstruct transactional
data structures and redo updates. No special sweep of the
log is required because ARIES/RH does the same accesses
as ARIES. Specifically, the forward pass of recovery is only
different from that of ARIES in its processing of update
(there is an extra check for ob � Ob List�t�) and delegate
(same check and the move from one Ob List to the other).
Thus, ARIES/RH adds neither extra log sweeps, nor costs
proportional to the length of the log, as it uses the same
sweeps of the log as ARIES to reconstruct the delegation
information. We expect the Ob List to be much smaller
than the log being analyzed, and to wholly reside in main
memory, especially because it only has objects that are dele-
gated. Thus the cost of accessingOb List is small compared
to bringing the log from stable storage, the dominant cost
during recovery.

The backward pass of recovery reads the log in much the
same way as ARIES, by continually taking the maximum
Log Sequence Number that must be undone (in ARIES) or
the scope clusters within which updates must be undone
(in ARIES/RH). In ARIES/RH we examine log records in
clusters formed by loser scopes, but, as in ARIES, we do
it in a monotonically decreasing way. To compare with
ARIES, we need only examine the costs for processing up-
date records (the other cost in ARIES). For each update, we
do a lookup in Cluster for a check of delegation scope (to
decide whether to undo it), and possibly write a Compensa-
tion Log Record. Otherwise, we just add or remove scopes
from the Cluster and the LsrScopes sets.

In summary, ARIES/RH adds only minimal overhead to
ARIES to support delegation.

5 Related Work

Previous work has produced many Advanced Transaction
Models (ATMs), but each has its own tailor-made implemen-
tation. For instance, both Argus [12] and Camelot [19] each
supports its ATM (variants of nested transactions). Split-
Transactions [16] allows the commitment of partial results
but in a way that is less general than delegation (see section
2.2). Thus, although efficient, these systems are limited in
the models they can synthesize.

Delegation, by allowing changes in the visibility and re-
covery properties of transactions, is a powerful primitive for
synthesizing ATMs. Our work builds on the formal founda-
tion provided by ACTA [6, 5], and the primitives introduced
in ASSET [3]. With delegation (and the other two ASSET
primitives, permit and form-dependency [3]) we believe we
can offer the flexibility to synthesize a wide range of ATMs.
Given the efficient implementation of delegation presented
in this paper, we believe we can achieve this flexibility at a
performance comparable to that of tailor-made implemen-
tations.

Our research also builds on the substantial work in
ARIES [13], in particular ARIES/NT [18], an extension
of ARIES that supports nested transactions [14]. Rewrit-
ing history is a natural extension of the repeating history
paradigm of ARIES, and it has served as a powerful ab-
straction to guide our efforts.

More specifically, in order to support the rewriting of
history, we extended the idea of chaining back log records
introduced in ARIES to a smaller granularity: the sub-chain
of the log pertaining to a particular set of object updates.
ARIES/NT extends the backward chain to a tree (reflect-
ing the nested transaction structure). Our method is more
general: by keeping information about which transaction is
responsible for individual updates, we can support not just
Nested Transactions, but many ATMs, such as Split Trans-
actions, Co-Transactions, and ReportingTransactions. Thus
our extension of ARIES, while including it, goes beyond the

functionality provided inARIES/NT, and allows the efficient
synthesis of arbitrary ATMs, not just nested transactions.

Work related to ours includes the Transaction Specifica-
tion and Management Environment (TSME, [9]), in which
specifications are mapped to certain configurations of pre-
built components, so it approaches the problem at a coarser
grain. This may allow for initial gains in performance, but
we believe that the use of language primitives is a richer and
more flexible approach. Barga and Pu [1] explore another
modular approach, based on metaobject protocols [11], and
incorporate some elements of the TSME approach and some
of our language-based approach. Also related is the Con-
Tract model [20], where a set of steps define individual
transactions; a script is provided to control the execution of
these transactions. But ConTract scripts introduce their own
control flow syntax, while ASSET introduces a small set of
transaction management primitives that can be embedded in
a host language.

6 Conclusions
The main contribution of this paper is the concept of

rewriting history (RH), designed to achieve the semantics of
delegation in an efficient and robust manner. We believe that
this work forms a crucial step towards the flexible synthesis
of ATMs:

� By casting delegation in terms of rewriting history, we were
able to express the issues of delegation in terms amenable
to the specification of a recovery algorithm.

� We showed how to achieve RH in the context of a practical
system (ARIES) and we have also discussed elsewhere [15]
how to apply it to another (EOS), suggesting the practical
implementability of delegation. As indicated in section 4,
the cost of delegation in ARIES/RH is very low, and its
support incurs no cost at all when delegation is not used.

We have also demonstrated (elsewhere, [15]) the cor-
rectness of our implementation, showing that it satisfies the
desired transaction properties in the presence of delegation.

We are exploring the issues of delegating components of
complex objects. We will continue investigating the broader
issues of providing robust, efficient, and flexible transaction
processing. In particular, we are interested in making re-
covery a first-class concept within transaction management
and in providing a variety of recovery primitives to a trans-
action programmer so that different recovery requirements
and recovery semantics can be achieved flexibly.

References
[1] R. S. Barga and C. Pu. A practical and modular implemen-

tation of extended transaction models. In Proc. of the 21st
Int’l Conf. on Very Large Data Bases, Zürich, Sept. 1995.

[2] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concur-
rency Control and Recovery in Database Systems. Addison-
Wesley, Reading, Mass., 1987.

[3] A. Biliris, S. Dar, N. Gehani, H. V. Jagadish, and K. Ra-
mamritham. ASSET: A system for supporting extended

transactions. In Proc. of the ACM SIGMOD Int’l Conf. on
Management of Data, Minneapolis, Minn., June 1994.

[4] A. Biliris and E. Panagos. EOS User’s Guide. AT&T Bell
Labs, May 1993.

[5] P. K. Chrysanthis and K. Ramamritham. Delegation in ACTA
as a means to control sharing in extended transactions. IEEE
Data Eng. Bull., 16(2):16–19, June 1993.

[6] P. K. Chrysantis and K. Ramamritham. Synthesis of extended
transaction models using ACTA. ACM Trans. on Database
Systems, Sept. 1994.

[7] A. K. Elmagarmid, editor. Database Transaction Models
for Advanced Applications. Morgan Kaufmann, San Mateo,
Calif., 1991.

[8] N. Gehani, K. Ramamritham, and O. Shmueli. Accessing ex-
tra database information: Concurrency control and correct-
ness. Technical Report 93-081, University of Massachusetts,
Amherst, Mass., 1993.

[9] D. Georgakopoulos, M. Hornick, P. Krychniak, and
F. Manola. Specification and management of extended trans-
actions in a programmable transaction environment. In Proc.
IEEE Int’l Conf. onData Eng., page 462, Houston, Tex., Feb.
1994.

[10] J. Gray and A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, San Mateo, Calif.,
1993.

[11] G. Kiczales, J. des Rivières, and D. G. Bobrow. The Art
of the Metaobject Protocol. MIT Press, Cambridge, Mass.,
1991.

[12] B. Liskov and R. W. Scheifler. The Argus Language and
System. In Lecture Notes on Computer Science Springer
Verlag, volume 190, Berlin, 1982.

[13] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. ARIES: A transaction recovery method sup-
porting fine-granularity locking and partial rollbacks using
write-ahead logging. ACM Trans. on Database Systems,
17(1):94–162, Mar. 1992.

[14] J. E. B. Moss. Nested Transactions: An approachto reliable
distributed computing. PhD thesis, Massachusetts Institute
of Technology, Cambridge, Mass., Apr. 1981.

[15] C. Pedregal Martin and K. Ramamritham. Delegation: Effi-
ciently rewriting history. Technical Report 95-090, Univer-
sity of Massachusetts, Amherst, Mass., Dec. 1995.

[16] C. Pu, G. Kaiser, and N. Hutchinson. Split-transactions for
open-endedactivities. In Proc. of the 14th Int’l Conf. on Very
Large Data Bases, pages 26–37, Los Angeles, Calif., Sept.
1988.

[17] Krithi Ramamritham and Panos K. Chrysanthis Advances
in Concurrency Control and Transaction Processing. IEEE
Computer Society Press, Los Alamitos, Calif., 1996.

[18] K. Rothermel and C. Mohan. ARIES/NT: A recovery method
based on write-ahead logging for nested transactions. In
Proc. of the 15th Int’l Conf. on Very Large Data Bases,
Amsterdam, Aug. 1989.

[19] A. Z. Spector, R. Pausch, and G. Bruell. Camelot: A flex-
ible, distributed transaction processing system. In Proc. of
Compcon, Feb. 1988.

[20] H. Wächter and A. Reuter. The ConTract Model. In Elma-
garmid [7], 1991.

